Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Raffaele Zarrilli is active.

Publication


Featured researches published by Raffaele Zarrilli.


International Journal of Antimicrobial Agents | 2013

Global evolution of multidrug-resistant Acinetobacter baumannii clonal lineages

Raffaele Zarrilli; Spyros Pournaras; Maria Giannouli; Athanassios Tsakris

The rapid expansion of Acinetobacter baumannii clinical isolates exhibiting resistance to carbapenems and most or all available antibiotics during the last decade is a worrying evolution. The apparent predominance of a few successful multidrug-resistant lineages worldwide underlines the importance of elucidating the mode of spread and the epidemiology of A. baumannii isolates in single hospitals, at a country-wide level and on a global scale. The evolutionary advantage of the dominant clonal lineages relies on the capability of the A. baumannii pangenome to incorporate resistance determinants. In particular, the simultaneous presence of divergent strains of the international clone II and their increasing prevalence in international hospitals further support the ongoing adaptation of this lineage to the hospital environment. Indeed, genomic and genetic studies have elucidated the role of mobile genetic elements in the transfer of antibiotic resistance genes and substantiate the rate of genetic alterations associated with acquisition in A. baumannii of various resistance genes, including OXA- and metallo-β-lactamase-type carbapenemase genes. The significance of single nucleotide polymorphisms and transposon mutagenesis in the evolution of A. baumannii has been also documented. Establishment of a network of reference laboratories in different countries would generate a more complete picture and a fuller understanding of the importance of high-risk A. baumannii clones in the international dissemination of antibiotic resistance.


Journal of Immunology | 2000

Up-Regulation of IL-17 Is Associated with Bioactive IL-8 Expression in Helicobacter pylori-Infected Human Gastric Mucosa

Francesco Luzza; Tiziana Parrello; Giovanni Monteleone; Ladislava Sebkova; Marco Romano; Raffaele Zarrilli; Maria Imeneo; Francesco Pallone

Helicobacter pylori (Hp)-associated gastritis is characterized by an increased number of acute and chronic inflammatory cells secreting cytokines that contribute to maintain and expand the local inflammation. Locally induced IL-8 is believed to play a major role in the Hp-associated acute inflammatory response. Factors/mechanisms that regulate IL-8 induction are, however, not fully understood. In the present study we investigated whether Hp infection is associated with an increased production of IL-17, a T cell-derived cytokine capable of modulating IL-8 gene expression. We showed that both IL-17 RNA transcripts and protein were expressed at a higher level in the whole gastric mucosal and lamina propria mononuclear cell samples from Hp-infected patients than in those from uninfected subjects. Hp eradication was associated with a marked down-regulation of IL-17 expression. The addition of a neutralizing anti-IL-17 Ab to the gastric lamina propria mononuclear cell cultures resulted in a significant inhibition of IL-8 secretion, indicating that IL-17 contributes to enhance IL-8 in the Hp-colonized gastric mucosa. Consistently, stimulation of MKN 28 cells, a gastric epithelial cell line, with IL-17 increased IL-8 secretion. Finally, conditioned medium from the IL-17-stimulated MKN 28 cell cultures promoted the in vitro polymorphonuclear leukocyte migration. This effect was inhibitable by a neutralizing IL-8 but not IL-17 Ab. Together, these data indicate that biologically active IL-17 production is increased during Hp infection, suggesting the possibility that this cytokine may play an important role in the inflammatory response to the Hp colonization.


Journal of Biological Chemistry | 1998

Helicobacter pylori Up-regulates Cyclooxygenase-2 mRNA Expression and Prostaglandin E2 Synthesis in MKN 28 Gastric Mucosal Cells in Vitro

Marco Romano; Vittorio Ricci; Annamaria Memoli; Concetta Tuccillo; Anna Di Popolo; Patrizia Sommi; Angela M. Acquaviva; Camillo Del Vecchio Blanco; Carmelo B. Bruni; Raffaele Zarrilli

Helicobacter pylori has been suggested to play a role in the development of gastric carcinoma in humans. Also, mounting evidence indicates that cyclooxygenase-2 overexpression is associated with gastrointestinal carcinogenesis. We studied the effect of H. pylori on the expression and activity of cyclooxygenase-1 and cyclooxygenase-2 in MKN 28 gastric mucosal cells. H. pylori did not affect cyclooxygenase-1 expression, whereas cyclooxygenase-2 mRNA levels increased by 5-fold at 24 h after incubation of MKN 28 cells with broth culture filtrates or bacterial suspensions from wild-type H. pyloristrain. Also, H. pylori caused a 3-fold increase in the release of prostaglandin E2, the main product of cyclooxygenase activity. This effect was specifically related toH. pylori because it was not observed withEscherichia coli and was independent of VacA, CagA, or ammonia. H. pylori isogenic mutants specifically lackingpicA or picB, which are responsible for cytokine production by gastric cells, were less effective in the up-regulation of cyclooxygenase-2 mRNA expression and in the stimulation of prostaglandin E2 release compared with the parental wild-type strain. This study suggests that development of gastric carcinoma associated with H. pylori infection may depend on the activation of cyclooxygenase-2-related events.


Clinical Infectious Diseases | 2013

Colistin and Rifampicin Compared With Colistin Alone for the Treatment of Serious Infections Due to Extensively Drug-Resistant Acinetobacter baumannii: A Multicenter, Randomized Clinical Trial

Emanuele Durante-Mangoni; Giuseppe Signoriello; Roberto Andini; Annunziata Mattei; Maria De Cristoforo; Patrizia Murino; Matteo Bassetti; Paolo Malacarne; Nicola Petrosillo; Nicola Galdieri; Paola Mocavero; Antonio Corcione; Claudio Viscoli; Raffaele Zarrilli; Ciro Gallo; Riccardo Utili

BACKGROUND Extensively drug-resistant (XDR) Acinetobacter baumannii may cause serious infections in critically ill patients. Colistin often remains the only therapeutic option. Addition of rifampicin to colistin may be synergistic in vitro. In this study, we assessed whether the combination of colistin and rifampicin reduced the mortality of XDR A. baumannii infections compared to colistin alone. METHODS This multicenter, parallel, randomized, open-label clinical trial enrolled 210 patients with life-threatening infections due to XDR A. baumannii from intensive care units of 5 tertiary care hospitals. Patients were randomly allocated (1:1) to either colistin alone, 2 MU every 8 hours intravenously, or colistin (as above), plus rifampicin 600 mg every 12 hours intravenously. The primary end point was overall 30-day mortality. Secondary end points were infection-related death, microbiologic eradication, and hospitalization length. RESULTS Death within 30 days from randomization occurred in 90 (43%) subjects, without difference between treatment arms (P = .95). This was confirmed by multivariable analysis (odds ratio, 0.88 [95% confidence interval, .46-1.69], P = .71). A significant increase of microbiologic eradication rate was observed in the colistin plus rifampicin arm (P = .034). No difference was observed for infection-related death and length of hospitalization. CONCLUSIONS In serious XDR A. baumannii infections, 30-day mortality is not reduced by addition of rifampicin to colistin. These results indicate that, at present, rifampicin should not be routinely combined with colistin in clinical practice. The increased rate of A. baumannii eradication with combination treatment could still imply a clinical benefit. CLINICAL TRIALS REGISTRATION NCT01577862.


Journal of Clinical Microbiology | 2004

Molecular Epidemiology of Sequential Outbreaks of Acinetobacter baumannii in an Intensive Care Unit Shows the Emergence of Carbapenem Resistance

Raffaele Zarrilli; Margherita Crispino; Maria Bagattini; Elena Barretta; Anna Di Popolo; Maria Triassi; Paolo Villari

ABSTRACT The molecular epidemiology of multidrug-resistant Acinetobacter baumannii was investigated in the medical-surgical intensive care unit (ICU) of a university hospital in Italy during two window periods in which two sequential A. baumannii epidemics occurred. Genotype analysis by pulsed-field gel electrophoresis (PFGE) of A. baumannii isolates from 131 patients identified nine distinct PFGE patterns. Of these, PFGE clones B and I predominated and occurred sequentially during the two epidemics. A. baumannii epidemic clones showed a multidrug-resistant antibiotype, being clone B resistant to all antimicrobials tested except the carbapenems and clone I resistant to all antimicrobials except ampicillin-sulbactam and gentamicin. Type 1 integrons of 2.5 and 2.2 kb were amplified from the chromosomal DNA of epidemic PFGE clones B and I, respectively, but not from the chromosomal DNA of the nonepidemic clones. Nucleotide analysis of clone B integron identified four gene cassettes: aacC1, which confers resistance to gentamicin; two open reading frames (ORFs) coding for unknown products; and aadA1a, which confers resistance to spectinomycin and streptomycin. The integron of clone I contained three gene cassettes: aacA4, which confers resistance to amikacin, netilmicin, and tobramycin; an unknown ORF; and blaOXA-20, which codes for a class D β-lactamase that confers resistance to amoxicillin, ticarcillin, oxacillin, and cloxacillin. Also, the blaIMP allele was amplified from chromosomal DNA of A. baumannii strains of PFGE type I. Class 1 integrons carrying antimicrobial resistance genes and blaIMP allele in A. baumannii epidemic strains correlated with the high use rates of broad-spectrum cephalosporins, carbapenems, and aminoglycosides in the ICU during the study period.


British Journal of Cancer | 2003

Nonsteroidal anti-inflammatory drugs in colorectal cancer: from prevention to therapy

Paolo Ricchi; Raffaele Zarrilli; A. Di Palma; Angela M. Acquaviva

In this review, we discuss the available experimental evidences supporting the chemopreventive efficacy of nonsteroidal anti-inflammatory drugs (NSAIDs) on colorectal cancer and the biological basis for their possible role as anticancer agents. Although the comprehension of the mechanisms underlying the effects of these drugs on colon cancer cells is incomplete, research efforts in identifying the biochemical pathway by which NSAIDs exert their chemopreventive effect have provided a rationale for the potential use of NSAIDs alone or in combination with conventional and experimental anticancer agents in the treatment of colorectal cancer. In this paper, we review three main issues: (i) the role of COX-2 in colon cancer; (ii) the common death pathways between NSAIDs and anticancer drugs; and (iii) the biological basis for the combination therapy with COX-2 selective inhibitors and new selective inhibitors of growth factor signal transduction pathways.


Future Microbiology | 2011

Global spread of drug-resistant Acinetobacter baumannii: molecular epidemiology and management of antimicrobial resistance

Emanuele Durante-Mangoni; Raffaele Zarrilli

Acinetobacter baumannii is an opportunistic Gram-negative pathogen with increasing relevance in a variety of hospital-acquired infections especially among intensive care unit patients. Resistance to antimicrobial agents is the main reason for A. baumannii spread. A. baumannii outbreaks described worldwide are caused by a limited number of genotypic clusters of multidrug-resistant strains that successfully spread among hospitals of different cities and countries. In this article, we will focus on the mechanisms responsible for resistance to antimicrobials and disinfectants in A. baumannii and the epidemiology of drug-resistant A. baumannii in healthcare facilities. We will also discuss the therapeutic and infection control strategies for management of drug-resistant A. baumannii epidemics.


Clinical Microbiology and Infection | 2011

Molecular epidemiological investigation of multidrug-resistant Acinetobacter baumannii strains in four Mediterranean countries with a multilocus sequence typing scheme

A. Di Popolo; Maria Giannouli; Maria Triassi; Sylvain Brisse; Raffaele Zarrilli

Thirty-five multidrug-resistant Acinetobacter baumannii strains, representative of 28 outbreaks involving 484 patients from 20 hospitals in Greece, Italy, Lebanon and Turkey from 1999 to 2009, were analysed by multilocus sequence typing. Sequence type (ST)2, ST1, ST25, ST78 and ST20 caused 12, four, three, three and two outbreaks involving 227, 93, 62, 62 and 31 patients, respectively. The genes bla(oxa-58), bla(oxa-23) and bla(oxa-72) were found in 27, two and one carbapenem-resistant strain, respectively. In conclusion, A. baumannii outbreaks were caused by the spread of a few strains.


Oncogene | 2000

IGF-II/IGF-I receptor pathway up-regulates COX-2 mRNA expression and PGE2 synthesis in Caco-2 human colon carcinoma cells

Anna Di Popolo; Annamaria Memoli; Anna Apicella; Concetta Tuccillo; Antonella di Palma; Paolo Ricchi; Angela Maria Acquaviva; Raffaele Zarrilli

Nonsteroidal anti-inflammatory drugs reduce the risk of colon cancer and this effect is mediated in part through inhibition of type 2 prostaglandin endoperoxide synthase/cyclo-oxygenase (COX-2). In the present study, we demonstrate that COX-2 expression and PGE2 synthesis are up-regulated by an IGF-II/IGF-I receptor autocrine pathway in Caco-2 colon carcinoma cells. COX-2 mRNA and PGE2 levels are higher in proliferating cells compared with post-confluent differentiated cells and in cells that constitutively overexpress IGF-II. Up-regulation of COX-2 expression by IGF-II is mediated through activation of IGF-I receptor because: (i) treatment of Caco-2 cells with a blocking antibody to the IGF-I receptor inhibits COX-2 mRNA expression; (ii) transfection of Caco-2 cells with a dominant negative IGF-I receptor reduces COX-2 expression and activity. Also, the blockade of the PI3-kinase, that mediates the proliferative effect of IGF-I receptor in Caco-2 cells, inhibits IGF-II-dependent COX-2 up-regulation and PGE2 synthesis. Moreover, COX-2 expression and activity inversely correlate with the increase of apoptosis in parental, IGF-II and dominant-negative IGF-I receptor transfected cells. This study suggests that induction of proliferation and tumor progression of colon cancer cells by the IGF-II/IGF-I receptor pathway may depend on the activation of COX-2-related events.


Journal of Clinical Investigation | 1998

Helicobacter pylori upregulates expression of epidermal growth factor-related peptides, but inhibits their proliferative effect in MKN 28 gastric mucosal cells.

Marco Romano; Vittorio Ricci; A. Di Popolo; Patrizia Sommi; C. Del Vecchio Blanco; Carmelo B. Bruni; Ulderico Ventura; Timothy L. Cover; M. J. Blaser; Robert J. Coffey; Raffaele Zarrilli

Acute exposure to Helicobacter pylori causes cell damage and impairs the processes of cell migration and proliferation in cultured gastric mucosal cells in vitro. EGF-related growth factors play a major role in protecting gastric mucosa against injury, and are involved in the process of gastric mucosal healing. We therefore studied the acute effect of H. pylori on expression of EGF-related growth factors and the proliferative response to these factors in gastric mucosal cells (MKN 28) derived from gastric adenocarcinoma. Exposure of MKN 28 cells to H. pylori suspensions or broth culture filtrates upregulated mRNA expression of amphiregulin (AR) and heparin-binding EGF-like growth factor (HB-EGF), but not TGFalpha. This effect was specifically related to H. pylori since it was not observed with E. coli, and was independent of VacA, CagA, PicA, PicB, or ammonia. Moreover, H. pylori broth culture filtrates stimulated extracellular release of AR and HB-EGF protein by MKN 28 cells. AR and HB-EGF dose-dependently and significantly stimulated proliferation of MKN 28 cells in the absence of H. pylori filtrate, but had no effect in the presence of H. pylori broth culture filtrates. Inhibition of AR- or HB-EGF- induced stimulation of cell growth was not mediated by downregulation of the EGF receptor since EGF receptor protein levels, EGF binding affinity, number of specific binding sites for EGF, or HB-EGF- or AR-dependent tyrosine phosphorylation of the EGF receptor were not significantly altered by incubation with H. pylori broth culture filtrates. Increased expression of AR and HB-EGF were mediated by an H. pylori factor > 12 kD in size, whereas antiproliferative effects were mediated by both VacA and a factor < 12 kD in size. We conclude that H. pylori increases mucosal generation of EGF-related peptides, but in this acute experimental model, this event is not able to counteract the inhibitory effect of H. pylori on cell growth. The inhibitory effect of H. pylori on the reparative events mediated by EGF-related growth factors might play a role in the pathogenesis of H. pylori-induced gastroduodenal injury.

Collaboration


Dive into the Raffaele Zarrilli's collaboration.

Top Co-Authors

Avatar

Maria Triassi

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Marco Romano

Seconda Università degli Studi di Napoli

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maria Giannouli

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maria Bagattini

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Carmelo B. Bruni

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Concetta Tuccillo

Seconda Università degli Studi di Napoli

View shared research outputs
Top Co-Authors

Avatar

Riccardo Utili

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

A. Di Popolo

University of Naples Federico II

View shared research outputs
Researchain Logo
Decentralizing Knowledge