Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Raffaella Amici is active.

Publication


Featured researches published by Raffaella Amici.


Journal of Medicinal Chemistry | 2008

Cdc7 Kinase Inhibitors : Pyrrolopyridinones as Potential Antitumor Agents. 1. Synthesis and Structure-Activity Relationships

Ermes Vanotti; Raffaella Amici; Alberto Bargiotti; Jens Berthelsen; Roberta Bosotti; Antonella Ciavolella; Alessandra Cirla; Cinzia Cristiani; Roberto D'alessio; Barbara Forte; Antonella Isacchi; Katia Martina; Maria Menichincheri; Antonio Molinari; Alessia Montagnoli; Paolo Orsini; Antonio Pillan; Fulvia Roletto; Alessandra Scolaro; Marcellino Tibolla; Barbara Valsasina; Mario Varasi; Daniele Volpi; Corrado Santocanale

Cdc7 kinase is an essential protein that promotes DNA replication in eukaryotic organisms. Genetic evidence indicates that Cdc7 inhibition can cause selective tumor-cell death in a p53-independent manner, supporting the rationale for developing Cdc7 small-molecule inhibitors for the treatment of cancers. In this paper, the synthesis and structure-activity relationships of 2-heteroaryl-pyrrolopyridinones, the first potent Cdc7 kinase inhibitors, are described. Starting from 2-pyridin-4-yl-1,5,6,7-tetrahydro-pyrrolo[3,2-c]pyridin-4-one, progress toward a simple scaffold, tailored for Cdc7 inhibition, is reported.


Journal of Medicinal Chemistry | 2014

Cinnamic anilides as new mitochondrial permeability transition pore inhibitors endowed with ischemia-reperfusion injury protective effect in vivo.

Daniele Fancelli; Agnese Abate; Raffaella Amici; Paolo Bernardi; Marco Ballarini; Anna Cappa; Giacomo Carenzi; Andrea Colombo; Cristina Contursi; Fabio Di Lisa; Giulio Dondio; Stefania Gagliardi; Eva Milanesi; Saverio Minucci; Gilles Pain; Pier Giuseppe Pelicci; Alessandra Saccani; Mariangela Storto; Florian Thaler; Mario Varasi; Manuela Villa; Simon Plyte

In this account, we report the development of a series of substituted cinnamic anilides that represents a novel class of mitochondrial permeability transition pore (mPTP) inhibitors. Initial class expansion led to the establishment of the basic structural requirements for activity and to the identification of derivatives with inhibitory potency higher than that of the standard inhibitor cyclosporine-A (CsA). These compounds can inhibit mPTP opening in response to several stimuli including calcium overload, oxidative stress, and thiol cross-linkers. The activity of the cinnamic anilide mPTP inhibitors turned out to be additive with that of CsA, suggesting for these inhibitors a molecular target different from cyclophylin-D. In vitro and in vivo data are presented for (E)-3-(4-fluoro-3-hydroxy-phenyl)-N-naphthalen-1-yl-acrylamide 22, one of the most interesting compounds in this series, able to attenuate opening of the mPTP and limit reperfusion injury in a rabbit model of acute myocardial infarction.


Journal of Medicinal Chemistry | 2010

Synthesis and Biological Evaluation of N-Hydroxyphenylacrylamides and N-Hydroxypyridin-2-ylacrylamides as Novel Histone Deacetylase Inhibitors

Florian Thaler; Andrea Colombo; Antonello Mai; Raffaella Amici; Chiara Bigogno; Roberto Boggio; Anna Cappa; Simone Carrara; Tiziana Cataudella; Fulvia Fusar; Eleonora Gianti; Samuele Joppolo di Ventimiglia; Maurizio Moroni; Davide Munari; Gilles Pain; Nickolas Regalia; Luca Sartori; Stefania Vultaggio; Giulio Dondio; Stefania Gagliardi; Saverio Minucci; Ciro Mercurio; Mario Varasi

The histone deacetylases (HDACs) are able to regulate gene expression, and histone deacetylase inhibitors (HDACi) emerged as a new class of agents in the treatment of cancer as well as other human disorders such as neurodegenerative diseases. In the present investigation, we report on the synthesis and biological evaluation of compounds derived from the expansion of a HDAC inhibitor scaffold having N-hydroxy-3-phenyl-2-propenamide and N-hydroxy-3-(pyridin-2-yl)-2-propenamide as core structures and containing a phenyloxopropenyl moiety, either unsubstituted or substituted by a 4-methylpiperazin-1-yl or 4-methylpiperazin-1-ylmethyl group. The compounds were evaluated for their ability to inhibit nuclear HDACs, as well as for their in vitro antiproliferative activity. Moreover, their metabolic stability in microsomes and aqueous solubility were studied and selected compounds were further characterized by in vivo pharmacokinetic experiments. These compounds showed a remarkable stability in vivo, compared to hydroxamic acid HDAC inhibitors that have already entered clinical trials. The representative compound 30b showed in vivo antitumor activity in a human colon carcinoma xenograft model.


Bioorganic & Medicinal Chemistry | 2010

Optimization of 6,6-Dimethyl Pyrrolo[3,4-C]Pyrazoles: Identification of Pha-793887, a Potent Cdk Inhibitor Suitable for Intravenous Dosing.

Maria Gabriella Brasca; Clara Albanese; Rachele Alzani; Raffaella Amici; Nilla Avanzi; Dario Ballinari; James R. Bischoff; Daniela Borghi; Elena Casale; Valter Croci; Francesco Fiorentini; Antonella Isacchi; Ciro Mercurio; Marcella Nesi; Paolo Orsini; Wilma Pastori; Enrico Pesenti; Paolo Pevarello; Patrick Roussel; Mario Varasi; Daniele Volpi; Anna Vulpetti; Marina Ciomei

We have recently reported CDK inhibitors based on the 6-substituted pyrrolo[3,4-c]pyrazole core structure. Improvement of inhibitory potency against multiple CDKs, antiproliferative activity against cancer cell lines and optimization of the physico-chemical properties led to the identification of highly potent compounds. Compound 31 (PHA-793887) showed good efficacy in the human ovarian A2780, colon HCT-116 and pancreatic BX-PC3 carcinoma xenograft models and was well tolerated upon daily treatments by iv administration. It was identified as a drug candidate for clinical evaluation in patients with solid tumors.


ChemMedChem | 2007

6-Substituted Pyrrolo[3,4-c]pyrazoles: An Improved Class of CDK2 Inhibitors

Maria Gabriella Brasca; Clara Albanese; Raffaella Amici; Dario Ballinari; Luca Corti; Valter Croci; Daniele Fancelli; Francesco Fiorentini; Marcella Nesi; Paolo Orsini; Fabrizio Orzi; Wilma Pastori; Ettore Perrone; Enrico Pesenti; Paolo Pevarello; Federico Riccardi-Sirtori; Fulvia Roletto; Patrick Roussel; Mario Varasi; Anna Vulpetti; Ciro Mercurio

We have recently reported a new class of CDK2/cyclin A inhibitors based on a bicyclic tetrahydropyrrolo[3,4‐c]pyrazole scaffold. The introduction of small alkyl or cycloalkyl groups in position 6 of this scaffold allowed variation at the other two diversity points. Conventional and polymer‐assisted solution phase chemistry provided a way of generating compounds with improved biochemical and cellular activity. Optimization of the physical properties and pharmacokinetic profile led to a compound which exhibited good efficacy in vivo on A2780 human ovarian carcinoma.


Bioorganic & Medicinal Chemistry Letters | 1999

Sodium channel activity and sigma binding of 2-aminopropanamide anticonvulsants.

Paolo Pevarello; Alberto Bonsignori; Carla Caccia; Raffaella Amici; Robert Mcarthur; Ruggero G. Fariello; Patricia Salvati; Mario Varasi

Sodium channel blocking, anticonvulsant activity, and sigma (sigma) binding of selected leads in a series of alpha-amino amide anticonvulsants were examined. While anticonvulsant compounds were always endowed with low micromolar sodium (Na+) channel site-2 binding, compounds with low site-2 Na+ channel affinity failed to control seizures. No correlation could be drawn with sigma1 binding. Both anticonvulsant and Na+ channel blocking activities were independent of stereochemistry, while sigma1 binding seems to be favoured by an S-configuration on the aminoamide moiety.


Journal of The Chemical Society-perkin Transactions 1 | 1993

Nitrile oxide cycloaddition of non-activated alkynes: a novel approach to the synthesis of neuroactive isoxazoles

Paolo Pevarello; Raffaella Amici; Maristella Colombo; Mario Varasi

A general method for the unprecedented 1,3-dipolar cycloaddition of bromonitrile oxide to disubstituted non-activated alkynes provides a useful alternative route to the neuropharmacological tools AMPA and 4-methylhomoibotenic acid.


Journal of Medicinal Chemistry | 2004

3-Aminopyrazole inhibitors of CDK2/cyclin A as antitumor agents. 1. Lead finding

Paolo Pevarello; Maria Gabriella Brasca; Raffaella Amici; Paolo Orsini; Gabriella Traquandi; Luca Corti; Claudia Piutti; Pietro Sansonna; Manuela Villa; Betsy S. Pierce; Maurizio Pulici; Patrizia Giordano; Katia Martina; Edward L. Fritzen; Richard A. Nugent; Elena Casale; Alexander D. Cameron; Marina Ciomei; Fulvia Roletto; Antonella Isacchi; Gianpaolo Fogliatto; Enrico Pesenti; Wilma Pastori; Aurelio Marsiglio; Karen L. Leach; Paula Munns Clare; Francesco Fiorentini; Mario Varasi; and Anna Vulpetti; Martha A. Warpehoski


Archive | 1999

2-amino-thiazole derivatives, process for their preparation, and their use as antitumor agents

Paolo Pevarello; Raffaella Amici; Gabriella Traquandi; Manuela Villa; Anna Vulpetti; Antonella Isacchi


Archive | 1999

2-Ureido-thiazole derivatives, process for their preparation, and their use as antitumor agents

Paolo Pevarello; Raffaella Amici; Gabriella Traquandi; Manuela Villa; Anna Vulpetti; Antonella Isacchi

Collaboration


Dive into the Raffaella Amici's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Manuela Villa

European Institute of Oncology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paolo Orsini

National University of Ireland

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge