Raffaella Gozzelino
Instituto Gulbenkian de Ciência
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Raffaella Gozzelino.
Annual Review of Pharmacology and Toxicology | 2010
Raffaella Gozzelino; Viktória Jeney; Miguel P. Soares
Heme oxygenases (HO) catabolize free heme, that is, iron (Fe) protoporphyrin (IX), into equimolar amounts of Fe(2+), carbon monoxide (CO), and biliverdin. The stress-responsive HO-1 isoenzyme affords protection against programmed cell death. The mechanism underlying this cytoprotective effect relies on the ability of HO-1 to catabolize free heme and prevent it from sensitizing cells to undergo programmed cell death. This cytoprotective effect inhibits the pathogenesis of a variety of immune-mediated inflammatory diseases.
Science Translational Medicine | 2010
Rasmus Larsen; Raffaella Gozzelino; Viktória Jeney; László Tokaji; Fernando A. Bozza; André Miguel Japiassú; Dolores Bonaparte; Moisés Marinho Cavalcante; Ângelo Chora; Ana Ferreira; Ivo Marguti; Silvia Cardoso; Nuno Sepúlveda; Ann Smith; Miguel P. Soares
Heme from red blood cells released in septic shock worsens organ dysfunction and increases the risk of death, but can be overcome by a scavenger of free heme. Casting Heme in a New Light Sepsis, or severe systemic infection, is a deadly disease that has always been difficult to treat. Despite modern-day antibiotics and intensive care management, patients with sepsis still have a high rate of major complications and death. These severe consequences are thought to be a result of simultaneous overwhelming infection and an overexuberant immune response, which together damage tissues and lead to organ dysfunction. One cell type that is injured during sepsis is the erythrocyte. As these red blood cells lyse, hemoglobin is released and oxidized, releasing free heme into the circulation. This heme is not an innocent bystander, however, as Larsen et al. now report. It increases inflammation and cell death, exacerbating the damage to the body and increasing the risk of death. The authors found that mice lacking heme oxygenase 1, the enzyme that breaks down heme into harmless by-products, have more free circulating heme, which makes them more susceptible to death from sepsis than are matching wild-type mice. In addition, giving extra heme to wild-type mice suffering from sepsis greatly increases their risk of organ dysfunction and death without affecting the number of bacteria in their blood. Moreover, hemopexin, a protein produced by the body to scavenge free heme, protects mice and human patients with sepsis from the deleterious effects of heme and decreases the risk of complications and death. Because these authors have shown that heme concentrations are associated with worse prognosis in sepsis patients, we may now have a new way to monitor patients’ health status and, eventually, to treat them. Measurements of heme and hemopexin in patients with sepsis may predict who needs more intensive interventions, potentially allowing for more timely treatment before organ failure ensues. In addition, high-risk patients could be given extra hemopexin or other heme-neutralizing substances to possibly save them from death caused by sepsis, even when all the current treatments fail. Low-grade polymicrobial infection induced by cecal ligation and puncture is lethal in heme oxygenase-1–deficient mice (Hmox1−/−), but not in wild-type (Hmox1+/+) mice. Here we demonstrate that the protective effect of this heme-catabolizing enzyme relies on its ability to prevent tissue damage caused by the circulating free heme released from hemoglobin during infection. Heme administration after low-grade infection in mice promoted tissue damage and severe sepsis. Free heme contributed to the pathogenesis of severe sepsis irrespective of pathogen load, revealing that it compromised host tolerance to infection. Development of lethal forms of severe sepsis after high-grade infection was associated with reduced serum concentrations of the heme sequestering protein hemopexin (HPX), whereas HPX administration after high-grade infection prevented tissue damage and lethality. Finally, the lethal outcome of septic shock in patients was also associated with reduced HPX serum concentrations. We propose that targeting free heme by HPX might be used therapeutically to treat severe sepsis.
Proceedings of the National Academy of Sciences of the United States of America | 2009
Elsa Seixas; Raffaella Gozzelino; Angelo Chora; Ana Ferreira; Gabriela Silva; Rasmus Larsen; Sofia Rebelo; Carmen Penido; Neal Smith; Antonio Coutinho; Miguel P. Soares
Infection by Plasmodium, the causative agent of malaria, is associated with hemolysis and therefore with release of hemoglobin from RBC. Under inflammatory conditions, cell-free hemoglobin can be oxidized, releasing its heme prosthetic groups and producing deleterious free heme. Here we demonstrate that survival of a Plasmodium-infected host relies strictly on its ability to prevent the cytotoxic effects of free heme via the expression of the heme-catabolyzing enzyme heme oxygenase-1 (HO-1; encoded by the Hmox1 gene). When infected with Plasmodium chabaudi chabaudi (Pcc), wild-type (Hmox1+/+) BALB/c mice resolved infection and restored homeostasis thereafter (0% lethality). In contrast, HO-1 deficient (Hmox1−/−) BALB/c mice developed a lethal form of hepatic failure (100% lethality), similar to the one occurring in Pcc-infected DBA/2 mice (75% lethality). Expression of HO-1 suppresses the pro-oxidant effects of free heme, preventing it from sensitizing hepatocytes to undergo TNF-mediated programmed cell death by apoptosis. This cytoprotective effect, which inhibits the development of hepatic failure in Pcc-infected mice without interfering with pathogen burden, is mimicked by pharmacological antioxidants such as N-acetylcysteine (NAC). When administered therapeutically, i.e., after Pcc infection, NAC suppressed the development of hepatic failure in Pcc-infected DBA/2 mice (0% lethality), without interfering with pathogen burden. In conclusion, we describe a mechanism of host defense against Plasmodium infection, based on tissue cytoprotection against free heme and limiting disease severity irrespectively of parasite burden.
Cell | 2014
Bahtiyar Yilmaz; Silvia Portugal; Tuan M. Tran; Raffaella Gozzelino; Susana Ramos; Joana Gomes; Ana Regalado; Peter J. Cowan; Anthony J. F. D’Apice; Anita S. Chong; Ogobara K. Doumbo; Boubacar Traore; Peter D. Crompton; Henrique Silveira; Miguel P. Soares
Summary Glycosylation processes are under high natural selection pressure, presumably because these can modulate resistance to infection. Here, we asked whether inactivation of the UDP-galactose:β-galactoside-α1-3-galactosyltransferase (α1,3GT) gene, which ablated the expression of the Galα1-3Galβ1-4GlcNAc-R (α-gal) glycan and allowed for the production of anti-α-gal antibodies (Abs) in humans, confers protection against Plasmodium spp. infection, the causative agent of malaria and a major driving force in human evolution. We demonstrate that both Plasmodium spp. and the human gut pathobiont E. coli O86:B7 express α-gal and that anti-α-gal Abs are associated with protection against malaria transmission in humans as well as in α1,3GT-deficient mice, which produce protective anti-α-gal Abs when colonized by E. coli O86:B7. Anti-α-gal Abs target Plasmodium sporozoites for complement-mediated cytotoxicity in the skin, immediately after inoculation by Anopheles mosquitoes. Vaccination against α-gal confers sterile protection against malaria in mice, suggesting that a similar approach may reduce malaria transmission in humans. PaperFlick
Immunity | 2013
Nuno Figueiredo; Angelo Chora; Helena Raquel; Nadja Pejanovic; Pedro Pereira; Björn Hartleben; Ana Neves-Costa; Catarina Moita; Dora Pedroso; Andreia Pinto; Sofia Marques; Hafeez Faridi; Paulo Costa; Raffaella Gozzelino; Jimmy L. Zhao; Miguel P. Soares; Margarida Gama-Carvalho; Jennifer Martinez; Qingshuo Zhang; Gerd Döring; Markus Grompe; J. Pedro Simas; Tobias B. Huber; David Baltimore; Vineet Gupta; Douglas R. Green; João Ferreira; Luis F. Moita
Severe sepsis remains a poorly understood systemic inflammatory condition with high mortality rates and limited therapeutic options in addition to organ support measures. Here we show that the clinically approved group of anthracyclines acts therapeutically at a low dose regimen to confer robust protection against severe sepsis in mice. This salutary effect is strictly dependent on the activation of DNA damage response and autophagy pathways in the lung, as demonstrated by deletion of the ataxia telangiectasia mutated (Atm) or the autophagy-related protein 7 (Atg7) specifically in this organ. The protective effect of anthracyclines occurs irrespectively of pathogen burden, conferring disease tolerance to severe sepsis. These findings demonstrate that DNA damage responses, including the ATM and Fanconi Anemia pathways, are important modulators of immune responses and might be exploited to confer protection to inflammation-driven conditions, including severe sepsis.
Trends in Immunology | 2014
Miguel P. Soares; Raffaella Gozzelino; Sebastian Weis
Immune-driven resistance mechanisms are the prevailing host defense strategy against infection. By contrast, disease tolerance mechanisms limit disease severity by preventing tissue damage or ameliorating tissue function without interfering with pathogen load. We propose here that tissue damage control underlies many of the protective effects of disease tolerance. We explore the mechanisms of cellular adaptation that underlie tissue damage control in response to infection as well as sterile inflammation, integrating both stress and damage responses. Finally, we discuss the potential impact of targeting these mechanisms in the treatment of disease.
Cell Host & Microbe | 2012
Raffaella Gozzelino; Bruno B. Andrade; Rasmus Larsen; Nívea F. Luz; Liviu Vanoaica; Elsa Seixas; Antonio Coutinho; Silvia Cardoso; Sofia Rebelo; Maura Poli; Manoel Barral-Netto; Deepak Darshan; Lukas C. Kühn; Miguel P. Soares
Disease tolerance is a defense strategy that limits the fitness costs of infection irrespectively of pathogen burden. While restricting iron (Fe) availability to pathogens is perceived as a host defense strategy, the resulting tissue Fe overload can be cytotoxic and promote tissue damage to exacerbate disease severity. Examining this interplay during malaria, the disease caused by Plasmodium infection, we find that expression of the Fe sequestering protein ferritin H chain (FtH) in mice, and ferritin in humans, is associated with reduced tissue damage irrespectively of pathogen burden. FtH protection relies on its ferroxidase activity, which prevents labile Fe from sustaining proapoptotic c-Jun N-terminal kinase (JNK) activation. FtH expression is inhibited by JNK activation, promoting tissue Fe overload, tissue damage, and malaria severity. Mimicking FtHs antioxidant effect or inhibiting JNK activation pharmacologically confers therapeutic tolerance to malaria in mice. Thus, FtH provides metabolic adaptation to tissue Fe overload, conferring tolerance to malaria.
Antioxidants & Redox Signaling | 2014
Raffaella Gozzelino; Miguel P. Soares
SIGNIFICANCE Inflammation and immunity can be associated with varying degrees of heme release from hemoproteins, eventually leading to cellular and tissue iron (Fe) overload, oxidative stress, and tissue damage. Presumably, these deleterious effects contribute to the pathogenesis of systemic infections. RECENT ADVANCES Heme release from hemoglobin sensitizes parenchyma cells to undergo programmed cell death in response to proinflammatory cytokines, such as tumor necrosis factor. This cytotoxic effect is driven by a mechanism involving intracellular accumulation of free radicals, which sustain the activation of the c-Jun N-terminal kinase (JNK) signaling transduction pathway. While heme catabolism by heme oxygenase-1 (HO-1) prevents programmed cell death, this cytoprotective effect requires the co-expression of ferritin H (heart/heavy) chain (FTH), which controls the pro-oxidant effect of labile Fe released from the protoporphyrin IX ring of heme. This antioxidant effect of FTH restrains JNK activation, whereas JNK activation inhibits FTH expression, a cross talk that controls metabolic adaptation to cellular Fe overload associated with systemic infections. CRITICAL ISSUES AND FUTURE DIRECTIONS Identification and characterization of the mechanisms via which FTH provides metabolic adaptation to tissue Fe overload should provide valuable information to our current understanding of the pathogenesis of systemic infections as well as other immune-mediated inflammatory diseases.
International Journal of Molecular Sciences | 2016
Raffaella Gozzelino; Paolo Arosio
Iron is required for the survival of most organisms, including bacteria, plants, and humans. Its homeostasis in mammals must be fine-tuned to avoid iron deficiency with a reduced oxygen transport and diminished activity of Fe-dependent enzymes, and also iron excess that may catalyze the formation of highly reactive hydroxyl radicals, oxidative stress, and programmed cell death. The advance in understanding the main players and mechanisms involved in iron regulation significantly improved since the discovery of genes responsible for hemochromatosis, the IRE/IRPs machinery, and the hepcidin-ferroportin axis. This review provides an update on the molecular mechanisms regulating cellular and systemic Fe homeostasis and their roles in pathophysiologic conditions that involve alterations of iron metabolism, and provides novel therapeutic strategies to prevent the deleterious effect of its deficiency/overload.
The Journal of Neuroscience | 2007
Miguel F. Segura; Carme Solé; Marta Pascual; Rana S. Moubarak; M. José Pérez-García; Raffaella Gozzelino; Victoria Iglesias; Nahuai Badiola; Jose R. Bayascas; Nuria Llecha; José Rodríguez-Álvarez; Eduardo Soriano; Victor J. Yuste; Joan X. Comella
Death receptors (DRs) and their ligands are expressed in developing nervous system. However, neurons are generally resistant to death induction through DRs and rather their activation promotes neuronal outgrowth and branching. These results suppose the existence of DRs antagonists expressed in the nervous system. Fas apoptosis inhibitory molecule (FAIMS) was first identified as a Fas antagonist in B-cells. Soon after, a longer alternative spliced isoform with unknown function was identified and named FAIML. FAIMS is widely expressed, including the nervous system, and we have shown previously that it promotes neuronal differentiation but it is not an anti-apoptotic molecule in this system. Here, we demonstrate that FAIML is expressed specifically in neurons, and its expression is regulated during the development. Expression could be induced by NGF through the extracellular regulated kinase pathway in PC12 (pheochromocytoma cell line) cells. Contrary to FAIMS, FAIML does not increase the neurite outgrowth induced by neurotrophins and does not interfere with nuclear factor κB pathway activation as FAIMS does. Cells overexpressing FAIML are resistant to apoptotic cell death induced by DRs such as Fas or tumor necrosis factor R1. Reduction of endogenous expression by small interfering RNA shows that endogenous FAIML protects primary neurons from DR-induced cell death. The detailed analysis of this antagonism shows that FAIML can bind to Fas receptor and prevent the activation of the initiator caspase-8 induced by Fas. In conclusion, our results indicate that FAIML could be responsible for maintaining initiator caspases inactive after receptor engagement protecting neurons from the cytotoxic action of death ligands.