Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Raffaella Nicolai is active.

Publication


Featured researches published by Raffaella Nicolai.


Journal of The American College of Nutrition | 2004

Polyunsaturated fatty acids: Biochemical, nutritional and epigenetic properties

Paola Benatti; Gianfranco Peluso; Raffaella Nicolai; Menotti Calvani

Dietary polyunsaturated fatty acids (PUFA) have effects on diverse physiological processes impacting normal health and chronic diseases, such as the regulation of plasma lipid levels, cardiovascular and immune function, insulin action and neuronal development and visual function. Ingestion of PUFA will lead to their distribution to virtually every cell in the body with effects on membrane composition and function, eicosanoid synthesis, cellular signaling and regulation of gene expression. Cell specific lipid metabolism, as well as the expression of fatty acid-regulated transcription factors, likely play an important role in determining how cells respond to changes in PUFA composition. This review will focus on recent advances on the essentiality of these molecules and on their interplay in cell physiology, leading to new perspective in different therapeutic fields.


Journal of Cellular Physiology | 2000

Cancer and anticancer therapy-induced modifications on metabolism mediated by carnitine system.

Gianfranco Peluso; Raffaella Nicolai; Emilia Reda; Paola Benatti; Alfonso Barbarisi; Menotti Calvani

An efficient regulation of fuel metabolism in response to internal and environmental stimuli is a vital task that requires an intact carnitine system. The carnitine system, comprehensive of carnitine, its derivatives, and proteins involved in its transformation and transport, is indispensable for glucose and lipid metabolism in cells. Two major functions have been identified for the carnitine system: (1) to facilitate entry of long‐chain fatty acids into mitochondria for their utilization in energy‐generating processes; (2) to facilitate removal from mitochondria of short‐chain and medium‐chain fatty acids that accumulate as a result of normal and abnormal metabolism. In cancer patients, abnormalities of tumor tissue as well as nontumor tissue metabolism have been observed. Such abnormalities are supposed to contribute to deterioration of clinical status of patients, or might induce cancerogenesis by themselves. The carnitine system appears abnormally expressed both in tumor tissue, in such a way as to greatly reduce fatty acid beta‐oxidation, and in nontumor tissue. In this view, the study of the carnitine system represents a tool to understand the molecular basis underlying the metabolism in normal and cancer cells. Some important anticancer drugs contribute to dysfunction of the carnitine system in nontumor tissues, which is reversed by carnitine treatment, without affecting anticancer therapeutic efficacy. In conclusion, a more complex approach to mechanisms that underlie tumor growth, which takes into account the altered metabolic pathways in cancer disease, could represent a challenge for the future of cancer research. J. Cell. Physiol. 182:339–350, 2000.


Journal of Cellular Biochemistry | 2001

Carnitine: an osmolyte that plays a metabolic role.

Gianfranco Peluso; Alfonso Barbarisi; Vincenzo Savica; Emilia Reda; Raffaella Nicolai; Paola Benatti; Menotti Calvani

Carnitine, gamma‐trimethyl‐beta‐hydroxybutyrobetaine, is a small molecule widely present in all cells from prokaryotic to eukaryotic ones. It is the sole source of carbon and nitrogen in some bacteria; it serves as osmoprotectant in others. It is a carrier of acyl moieties, and exclusively of long‐chain fatty acids for mitochondrial beta‐oxidation in mammals. The conspicuously similar composition of the intracellular milieu among widely different species in relation to organic osmolyte systems involves the methylamine family to which carnitine belongs. This prompted us to examine the osmolytic properties of carnitine in an attempt to clarify the metabolic functions carnitine has acquired during evolution. An understanding of the metabolic functions of this organic compatible solute impinge on research involving this compound. J. Cell. Biochem. 80:1–10, 2000.


European Journal of Neuroscience | 2007

Protective effect of acetyl-l-carnitine on the apoptotic pathway of peripheral neuropathy

Lorenzo Di Cesare Mannelli; Carla Ghelardini; Menotti Calvani; Raffaella Nicolai; Luigi Mosconi; Elisa Vivoli; Alessandra Pacini; Alessandro Bartolini

Peripheral neuropathies are widespread disorders induced by autoimmune diseases, drug or toxin exposure, infections, metabolic insults or trauma. Nerve damage may cause muscle weakness, altered functionalities and sensitivity, and a chronic pain syndrome characterized by allodynia and hyperalgesia. Pathophysiological mechanisms related to neuropathic disease are associated with mitochondrial dysfunctions that lead to the activation of the apoptotic cascade. In a model of peripheral neuropathy, obtained by the loose ligation of the rat sciatic nerve (CCI), we describe a nerve apoptotic state that encompasses the release of cytochrome C in the cytosol, the activation of caspase 3, and the fragmentation of the genome. Animal treatment with acetyl‐l‐carnitine (ALCAR), but not with l‐carnitine (L‐Carn) or Gabapentin, prevents apoptosis induction. ALCAR reduces cytosolic cytochrome C and caspase 3 active fragments expression in a significant manner with respect to saline treatment. Accordingly, ALCAR treatment impairs caspase 3 protease activity, as demonstrated by reduced levels of cleaved PARP. Finally, ALCAR decreases the number of piknotic nuclei. This protection correlates with the induction of X‐linked inhibitor apoptosis protein (XIAP). Taken together these results show that CCI is a valuable model to investigate neuropathies‐related apoptosis phenomena and that ALCAR is able to prevent regulated cell death in the damaged sciatic nerve.


Blood | 2015

Targeting the leukemia cell metabolism by the CPT1a inhibition: functional preclinical effects in leukemias

Maria Rosaria Ricciardi; Simone Mirabilii; Matteo Allegretti; Roberto Licchetta; Anna Calarco; Maria Rosaria Torrisi; Robin Foà; Raffaella Nicolai; Gianfranco Peluso; Agostino Tafuri

Cancer cells are characterized by perturbations of their metabolic processes. Recent observations demonstrated that the fatty acid oxidation (FAO) pathway may represent an alternative carbon source for anabolic processes in different tumors, therefore appearing particularly promising for therapeutic purposes. Because the carnitine palmitoyl transferase 1a (CPT1a) is a protein that catalyzes the rate-limiting step of FAO, here we investigated the in vitro antileukemic activity of the novel CPT1a inhibitor ST1326 on leukemia cell lines and primary cells obtained from patients with hematologic malignancies. By real-time metabolic analysis, we documented that ST1326 inhibited FAO in leukemia cell lines associated with a dose- and time-dependent cell growth arrest, mitochondrial damage, and apoptosis induction. Data obtained on primary hematopoietic malignant cells confirmed the FAO inhibition and cytotoxic activity of ST1326, particularly on acute myeloid leukemia cells. These data suggest that leukemia treatment may be carried out by targeting metabolic processes.


Neurochemical Research | 2007

Systemic and Brain Metabolic Dysfunction as a New Paradigm for Approaching Alzheimer’s Dementia

Vincenzo Giordano; Gianfranco Peluso; Maurizio Iannuccelli; Paola Benatti; Raffaella Nicolai; Menotti Calvani

Since its definition Alzheimer’s disease has been at the centre of consideration for neurologists, psychiatrists, and pathologists. With John P. Blass it has been disclosed a different approach Alzheimer’s disease neurodegeneration understanding not only by the means of neurochemistry but also biochemistry opening new scenarios in the direction of a metabolic system degeneration. Nowadays, the understanding of the role of cholesterol, insulin, and adipokines among the others in Alzheimer’s disease etiopathogenesis is clarifying approaches valuable not only in preventing the disease but also for its therapy.


Acta Diabetologica | 2003

The carnitine system and body composition.

Emilia Reda; Stefania D'iddio; Raffaella Nicolai; Paola Benatti; Menotti Calvani

Abstract.Carnitine is a trimethylamine molecule that plays a unique role in cell energy metabolism. Mitochondrial betaoxidation of long-chain fatty acids, the major process by which fatty acids are oxidized, is ubiquitously dependent on carnitine. Control of mitochondrial beta-oxidation through carnitine adapts to differing requirements in different tissues. The physiological role of carnitine and its system in body composition is understood from insights into skeletal muscle metabolism, which converge into the metabolic heterogeneity of muscle fibers, and contractile properties that are correlated with phenotypes of resistance to fatigue. In skeletal muscle, the importance of the function of the carnitine system in the control and regulation of fuel partitioning not only relates to the metabolism of fatty acids and the capacity for fatty acid utilization, but also to systemic fat balance and insulin resistance. The carnitine system is shown to be determinant in insulin regulation of fat and glucose metabolic rate in skeletal muscle, this being critical in determining body composition and relevant raised levels of risk factors for cardiovascular disease, obesity, hypertension, and type 2 diabetes.


Neuropharmacology | 2002

Acetyl-l-carnitine induces muscarinic antinocieption in mice and rats.

Carla Ghelardini; Nicoletta Galeotti; Menotti Calvani; Luigi Mosconi; Raffaella Nicolai; Alessandro Bartolini

The analgesic activity of acetyl-L-carnitine (ALCAR) in neuropathic pain is well established. By contrast, its potential efficacy in the relief of acute pain has not been reported. The antinociceptive effect of ALCAR was, therefore, examined in the mouse hot-plate and abdominal constriction tests, and in the rat paw-pressure test. ALCAR (100 mg kg(-1) s.c. twice daily for seven days) produced an increase of the pain threshold in both mice and rats. ALCAR was also able to reverse hyperalgesia induced by kainic acid and NMDA administration in the mouse hot-plate test. The antinociception produced by ALCAR was prevented by the unselective muscarinic antagonist atropine, the M(1) selective antagonists pirenzepine and S-(-)-ET126, and by the choline uptake inhibitor hemicholinium-3 (HC-3). By contrast the analgesic effect of ALCAR was not prevented by the opioid antagonist naloxone, the GABA(B) antagonist CGP 35348, the monoamine synthesis inhibitor (alpha)-methyl-p-tyrosine, and the Gi-protein inactivator pertussis toxin. Moreover, ALCAR antinociception was abolished by pretreament with an antisense oligonucleotide (aODN) against the M(1) receptor subtype, administered at the dose of 2 nmol per single i.c.v injection. On the basis of the above data, it can be postulated that ALCAR exerted an antinociceptive effect mediated by a central indirect cholinergic mechanism. In the antinociceptive dose-range, ALCAR did not impair mouse performance evaluated by the rota-rod and hole-board tests.


Journal of Neuroscience Research | 2009

Neuroprotective effects of acetyl-L-carnitine on neuropathic pain and apoptosis: A role for the nicotinic receptor

Lorenzo Di Cesare Mannelli; Carla Ghelardini; Menotti Calvani; Raffaella Nicolai; Luigi Mosconi; Annarita Toscano; Alessandra Pacini; Alessandro Bartolini

Several pathologies related to nervous tissue alterations are characterized by a chronic pain syndrome defined by persistent or paroxysmal pain independent or dependent on a stimulus. Pathophysiological mechanisms related to neuropathic disease are associated with mitochondrial dysfunctions that lead to an activation of the apoptotic cascade. In a model of peripheral neuropathy obtained by the loose ligation of the rat sciatic nerve, acetyl‐L‐Carnitine (ALCAR; 100 mg/kg intraperitoneally [i.p.] twice daily for 14 days) was able to reduce hyperalgesia and apoptosis. In the present study, different mechanisms for the analgesic and the antineuropathic effect of ALCAR are described. The muscarinic blocker atropine (5 mg/kg i.p.) injected simultaneously with ALCAR did not antagonize the ALCAR antihyperalgesic effect on the paw‐pressure test but significantly reduced the analgesic effect of ALCAR. Conversely, the antineuropathic effect of ALCAR was prevented by cotreatment with the nicotinic antagonist mecamylamine (2 mg/kg i.p. twice daily for 14 days). A pharmacological silencing of the nicotinic receptors significantly reduced the X‐linked inhibitor of apoptosis protein–related protective effect of ALCAR on the apoptosis induced by ligation of the sciatic nerve. Taken together, these data highlight the relevance of nicotinic modulation in neuropathy treatment.


Journal of the National Cancer Institute | 2013

Carnitine-Acyltransferase System Inhibition, Cancer Cell Death, and Prevention of Myc-Induced Lymphomagenesis

Annalisa Pacilli; Maria Calienni; Sabrina Margarucci; Maria D’Apolito; Orsolina Petillo; Laura Rocchi; Gianandrea Pasquinelli; Raffaella Nicolai; Aleardo Koverech; Menotti Calvani; Gianfranco Peluso; Lorenzo Montanaro

BACKGROUND The metabolic alterations of cancer cells represent an opportunity for developing selective antineoplastic treatments. We investigated the therapeutic potential of ST1326, an inhibitor of carnitine-palmitoyl transferase 1A (CPT1A), the rate-limiting enzyme for fatty acid (FA) import into mitochondria. METHODS ST1326 was tested on in vitro and in vivo models of Burkitts lymphoma, in which c-myc, which drives cellular demand for FA metabolism, is highly overexpressed. We performed assays to evaluate the effect of ST1326 on proliferation, FA oxidation, and FA mitochondrial channeling in Raji cells. The therapeutic efficacy of ST1326 was tested by treating Eµ-myc mice (control: n = 29; treatment: n = 24 per group), an established model of c-myc-mediated lymphomagenesis. Experiments were performed on spleen-derived c-myc-overexpressing B cells to clarify the role of c-myc in conferring sensitivity to ST1326. Survival was evaluated with Kaplan-Meier analyses. All statistical tests were two-sided. RESULTS ST1326 blocked both long- and short-chain FA oxidation and showed a strong cytotoxic effect on Burkitts lymphoma cells (on Raji cells at 72 hours: half maximal inhibitory concentration = 8.6 μM). ST1326 treatment induced massive cytoplasmic lipid accumulation, impairment of proper mitochondrial FA channeling, and reduced availability of cytosolic acetyl coenzyme A, a fundamental substrate for de novo lipogenesis. Moreover, treatment with ST1326 in Eµ-myc transgenic mice prevented tumor formation (P = .01), by selectively impairing the growth of spleen-derived primary B cells overexpressing c-myc (wild-type cells + ST1326 vs. Eµ-myc cells + ST1326: 99.75% vs. 57.5%, difference = 42.25, 95% confidence interval of difference = 14% to 70%; P = .01). CONCLUSIONS Our data indicate that it is possible to tackle c-myc-driven tumorigenesis by altering lipid metabolism and exploiting the neoplastic cell addiction to FA oxidation.

Collaboration


Dive into the Raffaella Nicolai's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Agostino Tafuri

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Alfonso Barbarisi

Seconda Università degli Studi di Napoli

View shared research outputs
Researchain Logo
Decentralizing Knowledge