Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Raffaella Scardigli is active.

Publication


Featured researches published by Raffaella Scardigli.


Frontiers in Neuroscience | 2012

Btg1 is Required to Maintain the Pool of Stem and Progenitor Cells of the Dentate Gyrus and Subventricular Zone

Stefano Farioli-Vecchioli; Laura Micheli; Daniele Saraulli; Manuela Ceccarelli; Sara Cannas; Raffaella Scardigli; Luca Leonardi; Irene Cinà; Marco Costanzi; Maria Teresa Ciotti; Pedro Moreira; Jean Pierre Rouault; Vincenzo Cestari; Felice Tirone

Btg1 belongs to a family of cell cycle inhibitory genes. We observed that Btg1 is highly expressed in adult neurogenic niches, i.e., the dentate gyrus and subventricular zone (SVZ). Thus, we generated Btg1 knockout mice to analyze the role of Btg1 in the process of generation of adult new neurons. Ablation of Btg1 causes a transient increase of the proliferating dentate gyrus stem and progenitor cells at post-natal day 7; however, at 2 months of age the number of these proliferating cells, as well as of mature neurons, greatly decreases compared to wild-type controls. Remarkably, adult dentate gyrus stem and progenitor cells of Btg1-null mice exit the cell cycle after completing the S phase, express p53 and p21 at high levels and undergo apoptosis within 5 days. In the SVZ of adult (two-month-old) Btg1-null mice we observed an equivalent decrease, associated to apoptosis, of stem cells, neuroblasts, and neurons; furthermore, neurospheres derived from SVZ stem cells showed an age-dependent decrease of the self-renewal and expansion capacity. We conclude that ablation of Btg1 reduces the pool of dividing adult stem and progenitor cells in the dentate gyrus and SVZ by decreasing their proliferative capacity and inducing apoptosis, probably reflecting impairment of the control of the cell cycle transition from G1 to S phase. As a result, the ability of Btg1-null mice to discriminate among overlapping contextual memories was affected. Btg1 appears, therefore, to be required for maintaining adult stem and progenitor cells quiescence and self-renewal.


Cell Death & Differentiation | 2013

ProNGF\NGF imbalance triggers learning and memory deficits, neurodegeneration and spontaneous epileptic-like discharges in transgenic mice

C Tiveron; Luisa Fasulo; S Capsoni; Francesca Malerba; Silvia Marinelli; Francesca Paoletti; Sonia Piccinin; Raffaella Scardigli; Gianluca Amato; Rossella Brandi; P Capelli; S D'Aguanno; Fulvio Florenzano; F La Regina; A Lecci; A Manca; Giovanni Meli; L Pistillo; Nicola Berretta; Robert Nisticò; Flaminia Pavone; Antonino Cattaneo

ProNGF, the precursor of mature nerve growth factor (NGF), is the most abundant form of NGF in the brain. ProNGF and mature NGF differ significantly in their receptor interaction properties and in their bioactivity. ProNGF increases markedly in the cortex of Alzheimer’s disease (AD) brains and proNGF\NGF imbalance has been postulated to play a role in neurodegeneration. However, a direct proof for a causal link between increased proNGF and AD neurodegeneration is lacking. In order to evaluate the consequences of increased levels of proNGF in the postnatal brain, transgenic mice expressing a furin cleavage-resistant form of proNGF, under the control of the neuron-specific mouse Thy1.2 promoter, were derived and characterized. Different transgenic lines displayed a phenotypic gradient of neurodegenerative severity features. We focused the analysis on the two lines TgproNGF#3 and TgproNGF#72, which shared learning and memory impairments in behavioral tests, cholinergic deficit and increased Aβ-peptide immunoreactivity. In addition, TgproNGF#3 mice developed Aβ oligomer immunoreactivity, as well as late diffuse astrocytosis. Both TgproNGF lines also display electrophysiological alterations related to spontaneous epileptic-like events. The results provide direct evidence that alterations in the proNGF/NGF balance in the adult brain can be an upstream driver of neurodegeneration, contributing to a circular loop linking alterations of proNGF/NGF equilibrium to excitatory/inhibitory synaptic imbalance and amyloid precursor protein (APP) dysmetabolism.


Stem Cells | 2014

Neutralization of Nerve Growth Factor Impairs Proliferation and Differentiation of Adult Neural Progenitors in the Subventricular Zone

Raffaella Scardigli; Paolo Capelli; Domenico Vignone; Rossella Brandi; Marcello Ceci; Federico La Regina; Eleonora Piras; Simona Cintoli; Nicoletta Berardi; Simona Capsoni; Antonino Cattaneo

Adult neurogenesis is a multistep process regulated by several extrinsic factors, including neurotrophins. Among them, little is known about the role of nerve growth factor (NGF) in the neurogenic niches of the mouse. Here we analyzed the biology of adult neural stem cells (NSCs) from the subventricular zone (SVZ) of AD11 anti‐NGF transgenic mice, in which the expression of the recombinant antibody aD11 leads to a chronic postnatal neutralization of endogenous NGF. We showed that AD11‐NSCs proliferate 10‐fold less, with respect to their control counterparts, and display a significant impairment in their ability to differentiate into β‐tubulin positive neurons. We found a considerable reduction in the number of SVZ progenitors and neuroblasts also in vivo, which correlates with a lower number of newborn neurons in the olfactory bulbs of AD11 mice and a severe deficit in the ability of these mice to discriminate between different odors. We also demonstrated that, in AD11 mice, the morphology of both SVZ‐resident and neurosphere‐derived astrocytes is significantly altered. We were able to reproduce the AD11 phenotype in vitro, by acutely treating wild type NSCs with the anti‐NGF antibody, further demonstrating that both the proliferation and the differentiation defects are due to the NGF deprivation. Consistently, the proliferative impairment of AD11 progenitors, as well as the atrophic morphology of AD11 astrocytes, can be partly rescued in vitro and in vivo by exogenous NGF addition. Altogether, our results demonstrate a causal link between NGF signaling and proper proliferation and differentiation of neural stem cells from the SVZ. Stem Cells 2014;32:2516–2528


Human Molecular Genetics | 2017

Increased cytoplasmic TDP-43 reduces global protein synthesis by interacting with RACK1 on polyribosomes

Arianna Russo; Raffaella Scardigli; Federico La Regina; Melissa E. Murray; Nicla Romano; Dennis W. Dickson; Benjamin Wolozin; Antonino Cattaneo; Marcello Ceci

TDP-43 is a well known RNA binding protein involved in the pathogenesis of Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal Lobar Dementia (FTLD). In physiological conditions, TDP-43 mainly localizes in the nucleus and shuttles, at least in neurons, to the cytoplasm to form TDP-43 RNA granules. In the nucleus, TDP-43 participates to the expression and splicing of RNAs, while in the cytoplasm its functions range from transport to translation of specific mRNAs. However, if loss or gain of these TDP-43 functions are affected in ALS/FTLD pathogenesis is not clear. Here, we report that TDP-43 localizes on ribosomes not only in primary neurons but also in SH-SY5Y human neuroblastoma cells. We find that binding of TDP-43 to the translational machinery is mediated by an interaction with a specific ribosomal protein, RACK1, and that an increase in cytoplasmic TDP-43 represses global protein synthesis, an effect which is rescued by overexpression of RACK1. Ribosomal loss of RACK1, which excludes TDP-43 from the translational machinery, remarkably reduces formation of TDP-43 cytoplasmic inclusions in neuroblastoma cells. Finally, we corroborate the interaction between TDP-43 and RACK1 on polyribosomes of neuroblastoma cells with mis-localization of RACK1 on TDP-43 positive cytoplasmic inclusions in motor neurons of ALS patients. In conclusions, results from this study suggest that TDP-43 represents a translational repressor not only for specific mRNAs but for overall translation and that its binding to polyribosomes through RACK1 may promote, under conditions inducing ALS pathogenesis, the formation of cytoplasmic inclusions.


Frontiers in Cellular Neuroscience | 2014

Tis21 is required for adult neurogenesis in the subventricular zone and for olfactory behavior regulating cyclins, BMP4, Hes1/5 and Ids.

Stefano Farioli-Vecchioli; Manuela Ceccarelli; Daniele Saraulli; Laura Micheli; Sara Cannas; Francesca D'Alessandro; Raffaella Scardigli; Luca Leonardi; Irene Cinà; Marco Costanzi; Andrea Mattera; Vincenzo Cestari; Felice Tirone

Bone morphogenic proteins (BMPs) and the Notch pathway regulate quiescence and self-renewal of stem cells of the subventricular zone (SVZ), an adult neurogenic niche. Here we analyze the role at the intersection of these pathways of Tis21 (Btg2/PC3), a gene regulating proliferation and differentiation of adult SVZ stem and progenitor cells. In Tis21-null SVZ and cultured neurospheres, we observed a strong decrease in the expression of BMP4 and its effectors Smad1/8, while the Notch anti-neural mediators Hes1/5 and the basic helix-loop-helix (bHLH) inhibitors Id1-3 increased. Consistently, expression of the proneural bHLH gene NeuroD1 decreased. Moreover, cyclins D1/2, A2, and E were strongly up-regulated. Thus, in the SVZ Tis21 activates the BMP pathway and inhibits the Notch pathway and the cell cycle. Correspondingly, the Tis21-null SVZ stem cells greatly increased; nonetheless, the proliferating neuroblasts diminished, whereas the post-mitotic neuroblasts paradoxically accumulated in SVZ, failing to migrate along the rostral migratory stream to the olfactory bulb. The ability, however, of neuroblasts to migrate from SVZ explants was not affected, suggesting that Tis21-null neuroblasts do not migrate to the olfactory bulb because of a defect in terminal differentiation. Notably, BMP4 addition or Id3 silencing rescued the defective differentiation observed in Tis21-null neurospheres, indicating that they mediate the Tis21 pro-differentiative action. The reduced number of granule neurons in the Tis21-null olfactory bulb led to a defect in olfactory detection threshold, without effect on olfactory memory, also suggesting that within olfactory circuits new granule neurons play a primary role in odor sensitivity rather than in memory.


Archives of Biochemistry and Biophysics | 2012

Direct intracellular selection and biochemical characterization of a recombinant anti-proNGF single chain antibody fragment

Francesca Paoletti; Francesca Malerba; Petr V. Konarev; Michela Visintin; Raffaella Scardigli; Luisa Fasulo; Doriano Lamba; Dmitri I. Svergun; Antonino Cattaneo

proNGF, the precursor of the neurotrophin NGF, is widely expressed in central and peripheral nervous system. Its physiological functions are still largely unknown, although it emerged from studies in the last decade that proNGF has additional and distinct functions with respect to NGF, besides acting chaperone-like for NGF folding during its biogenesis. The regulation of proNGF/NGF ratio represents a crucial process for homeostasis of brain and other tissues, and understanding the molecular aspects of these differences is important. We report the selection and characterization of a recombinant monoclonal anti-proNGF antibody in single chain Fv fragment (scFv) format. The selection exploited the Intracellular Antibody Capture Technology (IACT), starting from a naïve mouse SPLINT (Single Pot Library of INTracellular antibodies) library. This antibody (scFv FPro10) was expressed recombinantly in Escherichia coli, was proven to be highly soluble and stable, and thoroughly characterized from the biochemical-biophysical point of view. scFv FPro10 displays high affinity and specificity for proNGF, showing no cross-reactivity with other pro-neurotrophins. A structural model was obtained by SAXS. scFv FPro10 represents a new tool to be exploited for the selective immunoanalysis of proNGF, both in vitro and in vivo, and might help in understanding the molecular function of proNGF in neurodegeneration.


Neuroscience Letters | 2010

RISC activity in hippocampus is essential for contextual memory

Enrico Maria Batassa; Marco Costanzi; Daniele Saraulli; Raffaella Scardigli; Christian Barbato; Carlo Cogoni; Vincenzo Cestari

RNA-Induced Silencing Complex (RISC) mediates post-transcriptional control of gene expression and contains Argonaute 2 (AGO2) protein as a central effector of cleavage or inhibition of mRNA translation. In the brain, the RISC pathway is involved in neuronal functions, such as synaptic development and local protein synthesis, which are potentially critical for memory. In this study, we examined the role of RISC in memory formation in rodents, by silencing AGO2 expression in dorsal hippocampus of C57BL/6 mice and submitting animals to hippocampus-related tasks. One week after surgery, AGO2 downregulation impaired both short-term and long-term contextual fear memories. Conversely, no long-lasting effects were observed three weeks after surgery, when AGO2 levels were re-established. These results show that altered RISC activity severely affects learning and memory processes in rodents.


Brain Structure & Function | 2017

Physical exercise rescues defective neural stem cells and neurogenesis in the adult subventricular zone of Btg1 knockout mice

Valentina Mastrorilli; Chiara Scopa; Daniele Saraulli; Marco Costanzi; Raffaella Scardigli; Jean Pierre Rouault; Stefano Farioli-Vecchioli; Felice Tirone

Adult neurogenesis occurs throughout life in the dentate gyrus (DG) and the subventricular zone (SVZ), where glia-like stem cells generate new neurons. Voluntary running is a powerful neurogenic stimulus triggering the proliferation of progenitor cells in the DG but, apparently, not in the SVZ. The antiproliferative gene Btg1 maintains the quiescence of DG and SVZ stem cells. Its ablation causes intense proliferation of DG and SVZ stem/progenitor cells in young mice, followed, during adulthood, by progressive decrease of the proliferative capacity. We have previously observed that running can rescue the deficit of DG Btg1-null neurogenesis. Here, we show that in adult Btg1-null SVZ stem and neuroblast cells, the reduction of proliferation is associated with a longer cell cycle and a more frequent entry into quiescence. Notably, running increases proliferation in Btg1-null SVZ stem cells highly above the levels of sedentary wild-type mice and restores normal values of cell cycle length and quiescence in stem and neuroblast cells, without affecting wild-type cells. Btg1-null SVZ neuroblasts show also increased migration throughout the rostral migratory stream and a deficiency of differentiated neurons in the olfactory bulb, possibly a consequence of premature exit from the cycle; running, however, normalizes migration and differentiation, increasing newborn neurons recruited to the olfactory circuitry. Furthermore, running increases the self-renewal of Btg1-null SVZ-derived neurospheres and, remarkably, in aged Btg1-null mice almost doubles the proliferating SVZ stem cells. Altogether, this reveals that SVZ stem cells are endowed with a hidden supply of self-renewal capacity, coupled to cell cycle acceleration and emerging after ablation of the quiescence-maintaining Btg1 gene and following exercise.


Biochemical and Biophysical Research Communications | 2010

Novel fluorescent cycloheximide derivatives for the imaging of protein synthesis.

Francesca Paoletti; Kevin Ainger; Ivan Donati; Raffaella Scardigli; Amedeo Vetere; Antonino Cattaneo; Cristiana Campa

Cycloheximide (CHX) is one of the most interesting protein synthesis inhibitors. For this reason, fluorescent derivatives of CHX could find useful applications in cell biology. We report the successful synthesis of a set of novel fluorescent derivatives of CHX. The effect of different functional groups on the biological activity of CHX was studied upon their modification through suitable strategies, i.e., acetylation of the hydroxyl group and reductive amination of the ketone group. The first route induced a complete loss of biological activity, while the second approach allowed a retained inhibition of protein synthesis, as demonstrated by in vitro translation assays. Various fluorescent dyes for reductive amination were tested (i.e., ANTS, APTS, and Rhodamine-123), and the success of the syntheses was demonstrated by diverse analytical techniques. Cycloheximide labeling with fluorescent dyes is a promising approach for developing fluorescence reporters for various applications, both in vitro (fluorescence spectroscopy) and in vivo (live imaging).


Acta Biomaterialia | 2018

Exploiting natural polysaccharides to enhance in vitro bio-constructs of primary neurons and progenitor cells

Manuela Medelin; Davide Porrelli; Emily Rose Aurand; Denis Scaini; Andrea Travan; Massimiliano Borgogna; Michela Cok; Ivan Donati; Eleonora Marsich; Chiara Scopa; Raffaella Scardigli; Sergio Paoletti; Laura Ballerini

Current strategies in Central Nervous System (CNS) repair focus on the engineering of artificial scaffolds for guiding and promoting neuronal tissue regrowth. Ideally, one should combine such synthetic structures with stem cell therapies, encapsulating progenitor cells and instructing their differentiation and growth. We used developments in the design, synthesis, and characterization of polysaccharide-based bioactive polymeric materials for testing the ideal composite supporting neuronal network growth, synapse formation and stem cell differentiation into neurons and motor neurons. Moreover, we investigated the feasibility of combining these approaches with engineered mesenchymal stem cells able to release neurotrophic factors. We show here that composite bio-constructs made of Chitlac, a Chitosan derivative, favor hippocampal neuronal growth, synapse formation and the differentiation of progenitors into the proper neuronal lineage, that can be improved by local and continuous delivery of neurotrophins. STATEMENT OF SIGNIFICANCE In our work, we characterized polysaccharide-based bioactive platforms as biocompatible materials for nerve tissue engineering. We show that Chitlac-thick substrates are able to promote neuronal growth, differentiation, maturation and formation of active synapses. These observations support this new material as a promising candidate for the development of complex bio-constructs promoting central nervous system regeneration. Our novel findings sustain the exploitation of polysaccharide-based scaffolds able to favour neuronal network reconstruction. Our study shows that Chitlac-thick may be an ideal candidate for the design of biomaterial scaffolds enriched with stem cell therapies as an innovative approach for central nervous system repair.

Collaboration


Dive into the Raffaella Scardigli's collaboration.

Top Co-Authors

Avatar

Antonino Cattaneo

International School for Advanced Studies

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marco Costanzi

National Research Council

View shared research outputs
Top Co-Authors

Avatar

Francesca Paoletti

International School for Advanced Studies

View shared research outputs
Top Co-Authors

Avatar

Vincenzo Cestari

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Felice Tirone

National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Francesca Malerba

Scuola Normale Superiore di Pisa

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge