Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Raffi V. Aroian is active.

Publication


Featured researches published by Raffi V. Aroian.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Bacillus thuringiensis crystal proteins that target nematodes

Jun-Zhi Wei; Kristina Hale; Lynn K. Carta; Edward Platzer; Cynthie Wong; Su-Chiung Fang; Raffi V. Aroian

Bacillus thuringiensis (Bt) crystal proteins are pore-forming toxins used as insecticides around the world. Previously, the extent to which these proteins might also target the invertebrate phylum Nematoda has been mostly ignored. We have expressed seven different crystal toxin proteins from two largely unstudied Bt crystal protein subfamilies. By assaying their toxicity on diverse free-living nematode species, we demonstrate that four of these crystal proteins are active against multiple nematode species and that each nematode species tested is susceptible to at least one toxin. We also demonstrate that a rat intestinal nematode is susceptible to some of the nematicidal crystal proteins, indicating these may hold promise in controlling vertebrate-parasitic nematodes. Toxicity in nematodes correlates with damage to the intestine, consistent with the mechanism of crystal toxin action in insects. Structure–function analyses indicate that one novel nematicidal crystal protein can be engineered to a small 43-kDa active core. These data demonstrate that at least two Bt crystal protein subfamilies contain nematicidal toxins.


Microbiology and Molecular Biology Reviews | 2013

Role of Pore-Forming Toxins in Bacterial Infectious Diseases

Ferdinand C. O. Los; Tara M. Randis; Raffi V. Aroian; Adam J. Ratner

SUMMARY Pore-forming toxins (PFTs) are the most common bacterial cytotoxic proteins and are required for virulence in a large number of important pathogens, including Streptococcus pneumoniae, group A and B streptococci, Staphylococcus aureus, Escherichia coli, and Mycobacterium tuberculosis. PFTs generally disrupt host cell membranes, but they can have additional effects independent of pore formation. Substantial effort has been devoted to understanding the molecular mechanisms underlying the functions of certain model PFTs. Likewise, specific host pathways mediating survival and immune responses in the face of toxin-mediated cellular damage have been delineated. However, less is known about the overall functions of PFTs during infection in vivo. This review focuses on common themes in the area of PFT biology, with an emphasis on studies addressing the roles of PFTs in in vivo and ex vivo models of colonization or infection. Common functions of PFTs include disruption of epithelial barrier function and evasion of host immune responses, which contribute to bacterial growth and spreading. The widespread nature of PFTs make this group of toxins an attractive target for the development of new virulence-targeted therapies that may have broad activity against human pathogens.


PLOS Pathogens | 2008

Activation of the unfolded protein response is required for defenses against bacterial pore-forming toxin in vivo

Larry J. Bischof; Cheng-Yuan Kao; Ferdinand C. O. Los; Manuel R. Gonzalez; Zhouxin Shen; Steven P. Briggs; F. Gisou van der Goot; Raffi V. Aroian

Pore-forming toxins (PFTs) constitute the single largest class of proteinaceous bacterial virulence factors and are made by many of the most important bacterial pathogens. Host responses to these toxins are complex and poorly understood. We find that the endoplasmic reticulum unfolded protein response (UPR) is activated upon exposure to PFTs both in Caenorhabditis elegans and in mammalian cells. Activation of the UPR is protective in vivo against PFTs since animals that lack either the ire-1-xbp-1 or the atf-6 arms of the UPR are more sensitive to PFT than wild-type animals. The UPR acts directly in the cells targeted by the PFT. Loss of the UPR leads to a normal response against unrelated toxins or a pathogenic bacterium, indicating its PFT-protective role is specific. The p38 mitogen-activated protein (MAPK) kinase pathway has been previously shown to be important for cellular defenses against PFTs. We find here that the UPR is one of the key downstream targets of the p38 MAPK pathway in response to PFT since loss of a functional p38 MAPK pathway leads to a failure of PFT to properly activate the ire-1-xbp-1 arm of the UPR. The UPR-mediated activation and response to PFTs is distinct from the canonical UPR-mediated response to unfolded proteins both in terms of its activation and functional sensitivities. These data demonstrate that the UPR, a fundamental intracellular pathway, can operate in intrinsic cellular defenses against bacterial attack.


PLOS Pathogens | 2011

Global functional analyses of cellular responses to pore-forming toxins.

Cheng-Yuan Kao; Ferdinand C. O. Los; Danielle L. Huffman; Shinichiro Wachi; Nicole Kloft; Matthias Husmann; Valbona Karabrahimi; Jean-Louis Schwartz; Audrey Bellier; Christine Ha; Youn Sagong; Hui Fan; Partho Ghosh; Mindy Hsieh; Chih-Shen Hsu; Li Chen; Raffi V. Aroian

Here we present the first global functional analysis of cellular responses to pore-forming toxins (PFTs). PFTs are uniquely important bacterial virulence factors, comprising the single largest class of bacterial protein toxins and being important for the pathogenesis in humans of many Gram positive and Gram negative bacteria. Their mode of action is deceptively simple, poking holes in the plasma membrane of cells. The scattered studies to date of PFT-host cell interactions indicate a handful of genes are involved in cellular defenses to PFTs. How many genes are involved in cellular defenses against PFTs and how cellular defenses are coordinated are unknown. To address these questions, we performed the first genome-wide RNA interference (RNAi) screen for genes that, when knocked down, result in hypersensitivity to a PFT. This screen identifies 106 genes (∼0.5% of genome) in seven functional groups that protect Caenorhabditis elegans from PFT attack. Interactome analyses of these 106 genes suggest that two previously identified mitogen-activated protein kinase (MAPK) pathways, one (p38) studied in detail and the other (JNK) not, form a core PFT defense network. Additional microarray, real-time PCR, and functional studies reveal that the JNK MAPK pathway, but not the p38 MAPK pathway, is a key central regulator of PFT-induced transcriptional and functional responses. We find C. elegans activator protein 1 (AP-1; c-jun, c-fos) is a downstream target of the JNK-mediated PFT protection pathway, protects C. elegans against both small-pore and large-pore PFTs and protects human cells against a large-pore PFT. This in vivo RNAi genomic study of PFT responses proves that cellular commitment to PFT defenses is enormous, demonstrates the JNK MAPK pathway as a key regulator of transcriptionally-induced PFT defenses, and identifies AP-1 as the first cellular component broadly important for defense against large- and small-pore PFTs.


Proceedings of the National Academy of Sciences of the United States of America | 2006

A purified Bacillus thuringiensis crystal protein with therapeutic activity against the hookworm parasite Ancylostoma ceylanicum

Michael Cappello; Richard D. Bungiro; Lisa M. Harrison; Larry J. Bischof; Joel S. Griffitts; Brad D. Barrows; Raffi V. Aroian

Crystal (Cry) proteins produced by the soil bacterium Bacillus thuringiensis (Bt) are harmless to vertebrates, but they are highly toxic to insects and nematodes. Their value in controlling insects that destroy crops and transmit human diseases is well established. Although it has recently been demonstrated that a few individual Bt Cry proteins, such as Cry5B, are toxic to a wide range of free-living nematodes, the potential activity of purified Cry proteins against parasitic nematodes remains largely unknown. We report here studies aimed at characterizing in vitro and in vivo anthelminthic activities of purified recombinant Cry5B against the hookworm parasite Ancylostoma ceylanicum, a bloodfeeding gastrointestinal nematode for which humans are permissive hosts. By using in vitro larval development assays, Cry5B was found to be highly toxic to early stage hookworm larvae. Exposure of adult A. ceylanicum to Cry5B was also associated with significant toxicity, including a substantial reduction in egg excretion by adult female worms. To demonstrate therapeutic efficacy in vivo, hamsters infected with A. ceylanicum were treated with three daily oral doses of purified Cry5B, the benzimidazole anthelminthic mebendazole, or buffer. Compared with control (buffer-treated) animals, infected hamsters that received Cry5B showed statistically significant improvements in growth and blood hemoglobin levels as well as reduced worm burdens that were comparable to the mebendazole-treated animals. These data demonstrate that Cry5B is highly active in vitro and in vivo against a globally significant nematode parasite and that Cry5B warrants further clinical development for human and veterinary use.


Blood | 2010

Eosinophils in the zebrafish: prospective isolation, characterization, and eosinophilia induction by helminth determinants

Keir M. Balla; Geanncarlo Lugo-Villarino; Jan M. Spitsbergen; David L. Stachura; Yan Hu; Karina Bañuelos; Octavio Romo-Fewell; Raffi V. Aroian; David Traver

Eosinophils are granulocytic leukocytes implicated in numerous aspects of immunity and disease. The precise functions of eosinophils, however, remain enigmatic. Alternative models to study eosinophil biology may thus yield novel insights into their function. Eosinophilic cells have been observed in zebrafish but have not been thoroughly characterized. We used a gata2:eGFP transgenic animal to enable prospective isolation and characterization of zebrafish eosinophils, and demonstrate that all gata2(hi) cells in adult hematopoietic tissues are eosinophils. Although eosinophils are rare in most organs, they are readily isolated from whole kidney marrow and abundant within the peritoneal cavity. Molecular analyses demonstrate that zebrafish eosinophils express genes important for the activities of mammalian eosinophils. In addition, gata2(hi) cells degranulate in response to helminth extract. Chronic exposure to helminth- related allergens resulted in profound eosinophilia, demonstrating that eosinophil responses to allergens have been conserved over evolution. Importantly, infection of adult zebrafish with Pseudocapillaria tomentosa, a natural nematode pathogen of teleosts, caused marked increases in eosinophil number within the intestine. Together, these observations support a conserved role for eosinophils in the response to helminth antigens or infection and provide a new model to better understand how parasitic worms activate, co-opt, or evade the vertebrate immune response.


Developmental Cell | 2002

The Anaphase-Promoting Complex and Separin Are Required for Embryonic Anterior-Posterior Axis Formation

Chad A. Rappleye; Akiko Tagawa; Rebecca Lyczak; Bruce Bowerman; Raffi V. Aroian

Polarization of the one-cell C. elegans embryo establishes the animals anterior-posterior (a-p) axis. We have identified reduction-of-function anaphase-promoting complex (APC) mutations that eliminate a-p polarity. We also demonstrate that the APC activator cdc20 is required for polarity. The APC excludes PAR-3 from the posterior cortex, allowing PAR-2 to accumulate there. The APC is also required for tight cortical association and posterior movement of the paternal pronucleus and its associated centrosome. Depletion of the protease separin, a downstream target of the APC, causes similar pronuclear and a-p polarity defects. We propose that the APC/separin pathway promotes close association of the centrosome with the cortex, which in turn excludes PAR-3 from the posterior pole early in a-p axis formation.


PLOS Neglected Tropical Diseases | 2009

The New Anthelmintic Tribendimidine is an L-type (Levamisole and Pyrantel) Nicotinic Acetylcholine Receptor Agonist

Yan Hu; Shu-Hua Xiao; Raffi V. Aroian

Background Intestinal parasitic nematodes such as hookworms, Ascaris lumbricoides, and Trichuris trichiura are amongst most prevalent tropical parasites in the world today. Although these parasites cause a tremendous disease burden, we have very few anthelmintic drugs with which to treat them. In the past three decades only one new anthelmintic, tribendimidine, has been developed and taken into human clinical trials. Studies show that tribendimidine is safe and has good clinical activity against Ascaris and hookworms. However, little is known about its mechanism of action and potential resistance pathway(s). Such information is important for preventing, detecting, and managing resistance, for safety considerations, and for knowing how to combine tribendimidine with other anthelmintics. Methodology/Principal Findings To investigate how tribendimidine works and how resistance to it might develop, we turned to the genetically tractable nematode, Caenorhabditis elegans. When exposed to tribendimidine, C. elegans hermaphrodites undergo a near immediate loss of motility; longer exposure results in extensive body damage, developmental arrest, reductions in fecundity, and/or death. We performed a forward genetic screen for tribendimidine-resistant mutants and obtained ten resistant alleles that fall into four complementation groups. Intoxication assays, complementation tests, genetic mapping experiments, and sequencing of nucleic acids indicate tribendimidine-resistant mutants are resistant also to levamisole and pyrantel and alter the same genes that mutate to levamisole resistance. Furthermore, we demonstrate that eleven C. elegans mutants isolated based on their ability to resist levamisole are also resistant to tribendimidine. Conclusions/Significance Our results demonstrate that the mechanism of action of tribendimidine against nematodes is the same as levamisole and pyrantel, namely, tribendimidine is an L-subtype nAChR agonist. Thus, tribendimidine may not be a viable anthelmintic where resistance to levamisole or pyrantel already exists but could productively be used where resistance to benzimidazoles exists or could be combined with this class of anthelmintics.


Cell Host & Microbe | 2011

RAB-5- and RAB-11-Dependent Vesicle-Trafficking Pathways Are Required for Plasma Membrane Repair after Attack by Bacterial Pore-Forming Toxin

Ferdinand C. O. Los; Cheng-Yuan Kao; Jane Smitham; Kent L. McDonald; Christine Ha; Christina A. Peixoto; Raffi V. Aroian

Pore-forming toxins (PFTs) secreted by pathogenic bacteria are the most common bacterial protein toxins and are important virulence factors for infection. PFTs punch holes in host cell plasma membranes, and although cells can counteract the resulting membrane damage, the underlying mechanisms at play remain unclear. Using Caenorhabditis elegans as a model, we demonstrate in vivo and in an intact epithelium that intestinal cells respond to PFTs by increasing levels of endocytosis, dependent upon RAB-5 and RAB-11, which are master regulators of endocytic and exocytic events. Furthermore, we find that RAB-5 and RAB-11 are required for protection against PFT and to restore integrity to the plasma membrane. One physical mechanism involved is the RAB-11-dependent expulsion of microvilli from the apical side of the intestinal epithelial cells. Specific vesicle-trafficking pathways thus protect cells against an attack by PFTs on plasma membrane integrity, via altered plasma membrane dynamics.


PLOS Pathogens | 2009

Hypoxia and the Hypoxic Response Pathway Protect against Pore-Forming Toxins in C. elegans

Audrey Bellier; Chang Shi Chen; Cheng Yuan Kao; Hediye Nese Cinar; Raffi V. Aroian

Pore-forming toxins (PFTs) are by far the most abundant bacterial protein toxins and are important for the virulence of many important pathogens. As such, cellular responses to PFTs critically modulate host-pathogen interactions. Although many cellular responses to PFTs have been recorded, little is understood about their relevance to pathological or defensive outcomes. To shed light on this important question, we have turned to the only genetic system for studying PFT-host interactions—Caenorhabditis elegans intoxication by Crystal (Cry) protein PFTs. We mutagenized and screened for C. elegans mutants resistant to a Cry PFT and recovered one mutant. Complementation, sequencing, transgenic rescue, and RNA interference data demonstrate that this mutant eliminates a gene normally involved in repression of the hypoxia (low oxygen response) pathway. We find that up-regulation of the C. elegans hypoxia pathway via the inactivation of three different genes that normally repress the pathway results in animals resistant to Cry PFTs. Conversely, mutation in the central activator of the hypoxia response, HIF-1, suppresses this resistance and can result in animals defective in PFT defenses. These results extend to a PFT that attacks mammals since up-regulation of the hypoxia pathway confers resistance to Vibrio cholerae cytolysin (VCC), whereas down-regulation confers hypersusceptibility. The hypoxia PFT defense pathway acts cell autonomously to protect the cells directly under attack and is different from other hypoxia pathway stress responses. Two of the downstream effectors of this pathway include the nuclear receptor nhr-57 and the unfolded protein response. In addition, the hypoxia pathway itself is induced by PFT, and low oxygen is protective against PFT intoxication. These results demonstrate that hypoxia and induction of the hypoxia response protect cells against PFTs, and that the cellular environment can be modulated via the hypoxia pathway to protect against the most prevalent class of weapons used by pathogenic bacteria.

Collaboration


Dive into the Raffi V. Aroian's collaboration.

Top Co-Authors

Avatar

Yan Hu

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul W. Sternberg

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Audrey Bellier

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gary R. Ostroff

University of Massachusetts Medical School

View shared research outputs
Researchain Logo
Decentralizing Knowledge