Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rafi Kabarriti is active.

Publication


Featured researches published by Rafi Kabarriti.


PLOS ONE | 2009

Protective role of R-spondin1, an intestinal stem cell growth factor, against radiation-induced gastrointestinal syndrome in mice

Payel Bhanja; Subhrajit Saha; Rafi Kabarriti; L. Liu; Namita Roy-Chowdhury; Jayanta Roy-Chowdhury; Rani S. Sellers; Alan A. Alfieri; Chandan Guha

Background Radiation-induced gastrointestinal syndrome (RIGS) results from a combination of direct cytocidal effects on intestinal crypt and endothelial cells and subsequent loss of the mucosal barrier, resulting in electrolyte imbalance, diarrhea, weight loss, infection and mortality. Because R-spondin1 (Rspo1) acts as a mitogenic factor for intestinal stem cells, we hypothesized that systemic administration of Rspo1 would amplify the intestinal crypt cells and accelerate the regeneration of the irradiated intestine, thereby, ameliorating RIGS. Methods and Findings Male C57Bl/6 mice received recombinant adenovirus expressing human R-spondin1 (AdRspo1) or E.coli Lacz (AdLacz), 1–3 days before whole body irradiation (WBI) or abdominal irradiation (AIR). Post-irradiation survival was assessed by Kaplan Meier analysis. RIGS was assessed by histological examination of intestine after hematoxilin and eosin staining, immunohistochemical staining of BrdU incorporation, Lgr5 and β-catenin expression and TUNEL staining. The xylose absorption test (XAT) was performed to evaluate the functional integrity of the intestinal mucosal barrier. In order to examine the effect of R-spondin1 on tumor growth, AdRspo1 and AdLacZ was administered in the animals having palpable tumor and then exposed to AIR. There was a significant increase in survival in AdRspo1 cohorts compared to AdLacZ (p<0.003) controls, following WBI (10.4 Gy). Significant delay in tumor growth was observed after AIR in both cohorts AdRspo1 and AdLacZ but AdRspo1 treated animals showed improved survival compared to AdLacZ. Histological analysis and XAT demonstrated significant structural and functional regeneration of the intestine in irradiated animals following AdRspo1 treatment. Immunohistochemical analysis demonstrated an increase in Lgr5+ve crypt cells and the translocation of β-catenin from the cytosol to nucleus and upregulation of β-catenin target genes in AdRspo1-treated mice, as compared to AdLacz-treated mice. Conclusion Rspo1 promoted radioprotection against RIGS and improved survival of mice exposed to WBI. The mechanism was likely related to induction of the Wnt-β-catenin pathway and promotion of intestinal stem cell regeneration. Rspo1 has protective effect only on normal intestinal tissue but not in tumors after AIR and thereby may increase the therapeutic ratio of chemoradiation therapy in patients undergoing abdominal irradiation for GI malignancies.


PLOS ONE | 2011

Bone Marrow Stromal Cell Transplantation Mitigates Radiation-Induced Gastrointestinal Syndrome in Mice

Subhrajit Saha; Payel Bhanja; Rafi Kabarriti; L. Liu; Alan A. Alfieri; Chandan Guha

Background Nuclear accidents and terrorism presents a serious threat for mass casualty. While bone-marrow transplantation might mitigate hematopoietic syndrome, currently there are no approved medical countermeasures to alleviate radiation-induced gastrointestinal syndrome (RIGS), resulting from direct cytocidal effects on intestinal stem cells (ISC) and crypt stromal cells. We examined whether bone marrow-derived adherent stromal cell transplantation (BMSCT) could restitute irradiated intestinal stem cells niche and mitigate radiation-induced gastrointestinal syndrome. Methodology/Principal Findings Autologous bone marrow was cultured in mesenchymal basal medium and adherent cells were harvested for transplantation to C57Bl6 mice, 24 and 72 hours after lethal whole body irradiation (10.4 Gy) or abdominal irradiation (16–20 Gy) in a single fraction. Mesenchymal, endothelial and myeloid population were characterized by flow cytometry. Intestinal crypt regeneration and absorptive function was assessed by histopathology and xylose absorption assay, respectively. In contrast to 100% mortality in irradiated controls, BMSCT mitigated RIGS and rescued mice from radiation lethality after 18 Gy of abdominal irradiation or 10.4 Gy whole body irradiation with 100% survival (p<0.0007 and p<0.0009 respectively) beyond 25 days. Transplantation of enriched myeloid and non-myeloid fractions failed to improve survival. BMASCT induced ISC regeneration, restitution of the ISC niche and xylose absorption. Serum levels of intestinal radioprotective factors, such as, R-Spondin1, KGF, PDGF and FGF2, and anti-inflammatory cytokines were elevated, while inflammatory cytokines were down regulated. Conclusion/Significance Mitigation of lethal intestinal injury, following high doses of irradiation, can be achieved by intravenous transplantation of marrow-derived stromal cells, including mesenchymal, endothelial and macrophage cell population. BMASCT increases blood levels of intestinal growth factors and induces regeneration of the irradiated host ISC niche, thus providing a platform to discover potential radiation mitigators and protectors for acute radiation syndromes and chemo-radiation therapy of abdominal malignancies.


PLOS ONE | 2012

Single Liver Lobe Repopulation with Wildtype Hepatocytes Using Regional Hepatic Irradiation Cures Jaundice in Gunn Rats

Hongchao Zhou; Xinyuan Dong; Rafi Kabarriti; Yong Chen; Yesim Avsar; Xia Wang; Jianqiang Ding; L. Liu; Ira J. Fox; Jayanta Roy-Chowdhury; Namita Roy-Chowdhury; Chandan Guha

Background and Aims Preparative hepatic irradiation (HIR), together with mitotic stimulation of hepatocytes, permits extensive hepatic repopulation by transplanted hepatocytes in rats and mice. However, whole liver HIR is associated with radiation-induced liver disease (RILD), which limits its potential therapeutic application. In clinical experience, restricting HIR to a fraction of the liver reduces the susceptibility to RILD. Here we test the hypothesis that repopulation of selected liver lobes by regional HIR should be sufficient to correct some inherited metabolic disorders. Methods Hepatocytes (107) isolated from wildtype F344 rats or Wistar-RHA rats were engrafted into the livers of congeneic dipeptidylpeptidase IV deficient (DPPIV−) rats or uridinediphosphoglucuronateglucuronosyltransferase-1A1-deficient jaundiced Gunn rats respectively by intrasplenic injection 24 hr after HIR (50 Gy) targeted to the median lobe, or median plus left liver lobes. An adenovector expressing hepatocyte growth factor (1011 particles) was injected intravenously 24 hr after transplantation. Results Three months after hepatocyte transplantation in DPPIV− rats, 30–60% of the recipient hepatocytes were replaced by donor cells in the irradiated lobe, but not in the nonirradiated lobes. In Gunn rats receiving median lobe HIR, serum bilirubin declined from pretreatment levels of 5.17±0.78 mg/dl to 0.96±0.30 mg/dl in 8 weeks and remained at this level throughout the 16 week observation period. A similar effect was observed in the group, receiving median plus left lobe irradiation. Conclusions As little as 20% repopulation of 30% of the liver volume was sufficient to correct hyperbilirubinemia in Gunn rats, highlighting the potential of regiospecific HIR in hepatocyte transplantation-based therapy of inherited metabolic liver diseases.


International Journal of Radiation Oncology Biology Physics | 2010

Hypofractionated whole-breast radiation therapy: does breast size matter?

Raquibul Hannan; Reid F. Thompson; Yu Chen; Karen De Amorim Bernstein; Rafi Kabarriti; W. Skinner; Chin C. Chen; E. Landau; E. Miller; M. Spierer; Linda Hong; S. Kalnicki

PURPOSE To evaluate the effects of breast size on dose-volume histogram parameters and clinical toxicity in whole-breast hypofractionated radiation therapy using intensity modulated radiation therapy (IMRT). MATERIALS AND METHODS In this retrospective study, all patients undergoing breast-conserving therapy between 2005 and 2009 were screened, and qualifying consecutive patients were included in 1 of 2 cohorts: large-breasted patients (chest wall separation>25 cm or planning target volume [PTV]>1500 cm3) (n=97) and small-breasted patients (chest wall separation<25 cm and PTV<1500 cm3) (n=32). All patients were treated prone or supine with hypofractionated IMRT to the whole breast (42.4 Gy in 16 fractions) followed by a boost dose (9.6 Gy in 4 fractions). Dosimetric and clinical toxicity data were collected and analyzed using the R statistical package (version 2.12). RESULTS The mean PTV V95 (percentage of volume receiving>=95% of prescribed dose) was 90.18% and the mean V105 percentage of volume receiving>=105% of prescribed dose was 3.55% with no dose greater than 107%. PTV dose was independent of breast size, whereas heart dose and maximum point dose to skin correlated with increasing breast size. Lung dose was markedly decreased in prone compared with supine treatments. Radiation Therapy Oncology Group grade 0, 1, and 2 skin toxicities were noted acutely in 6%, 69%, and 25% of patients, respectively, and at later follow-up (>3 months) in 43%, 57%, and 0% of patients, respectively. Large breast size contributed to increased acute grade 2 toxicity (28% vs 12%, P=.008). CONCLUSIONS Adequate PTV coverage with acceptable hot spots and excellent sparing of organs at risk was achieved by use of IMRT regardless of treatment position and breast size. Although increasing breast size leads to increased heart dose and maximum skin dose, heart dose remained within our institutional constraints and the incidence of overall skin toxicity was comparable to that reported in the literature. Taken together, these data suggest that hypofractionated radiation therapy using IMRT is a viable and appropriate therapeutic modality in large-breasted patients.


International Journal of Radiation Oncology Biology Physics | 2014

Bone marrow-derived stromal cell therapy in cirrhosis: clinical evidence, cellular mechanisms, and implications for the treatment of hepatocellular carcinoma.

Jeffrey M. Vainshtein; Rafi Kabarriti; Keyur J. Mehta; Jayanta Roy-Chowdhury; Chandan Guha

Current treatment options for hepatocellular carcinoma (HCC) are often limited by the presence of underlying liver disease. In patients with liver cirrhosis, surgery, chemotherapy, and radiation therapy all carry a high risk of hepatic complications, ranging from ascites to fulminant liver failure. For patients receiving radiation therapy, cirrhosis dramatically reduces the already limited radiation tolerance of the liver and represents the most important clinical risk factor for the development of radiation-induced liver disease. Although improvements in conformal radiation delivery techniques have improved our ability to safely irradiate confined areas of the liver to increasingly higher doses with excellent local disease control, patients with moderate-to-severe liver cirrhosis continue to face a shortage of treatment options for HCC. In recent years, evidence has emerged supporting the use of bone marrow-derived stromal cells (BMSCs) as a promising treatment for liver cirrhosis, with several clinical studies demonstrating sustained improvement in clinical parameters of liver function after autologous BMSC infusion. Three predominant populations of BMSCs, namely hematopoietic stem cells, mesenchymal stem cells, and endothelial progenitor cells, seem to have therapeutic potential in liver injury and cirrhosis. Preclinical studies of BMSC transplantation have identified a range of mechanisms through which these cells mediate their therapeutic effects, including hepatocyte transdifferentiation and fusion, paracrine stimulation of hepatocyte proliferation, inhibition of activated hepatic stellate cells, enhancement of fibrolytic matrix metalloproteinase activity, and neovascularization of regenerating liver. By bolstering liver function in patients with underlying Childs B or C cirrhosis, autologous BMSC infusion holds great promise as a therapy to improve the safety, efficacy, and utility of surgery, chemotherapy, and hepatic radiation therapy in the treatment of HCC.


Radiation Research | 2014

An Autologous In Situ Tumor Vaccination Approach for Hepatocellular Carcinoma. 1. Flt3 Ligand Gene Transfer Increases Antitumor Effects of a Radio-Inducible Suicide Gene Therapy in an Ectopic Tumor Model

Niloy J. Deb; Madhur Garg; Rafi Kabarriti; Alan A. Alfieri; Masahiko Takahashi; Jayanta Roy-Chowdhury; Chandan Guha

Hepatocellular carcinoma (HCC) often presents as a diffuse or multifocal tumor making it difficult to control by surgery or radiation. Radio-inducible herpes simplex virus thymidine kinase (HSV-TK) gene therapy has been shown to enhance local tumor control after radiation therapy (RT), while limiting the expression of the transgene in the irradiated tumor tissues. To prevent liver tumor recurrence and control systemic disease while limiting the potential bystander toxicity of HSV-TK therapy, we proposed to stimulate endogenous dendritic cell (DC) proliferation with systemic adenovirus Flt3 ligand (Adeno-Flt3L) gene therapy, followed by primary tumor radiation therapy combined with a radio-inducible HSV-TK gene therapy. We hypothesized that adenovirus-expressing Flt3L gene therapy will stimulate DC proliferation, allowing the upregulated DCs to locally harness tumor antigens released from HSV-TK/RT-treated HCC cells, thereby converting irradiated tumors to an autologous in situ tumor vaccine in mice with primary liver tumors. To test this hypothesis, an expression vector of HSV-TK was constructed under the control of a radio-inducible promoter early-growth response (Egr-TK) and a recombinant adenovirus-expressing human Flt3L was constructed. The Adeno-Flt3L [109 plaque forming units (pfu)] was administered intravenously on days 1 and 8 after radiation therapy. The murine hepatoma cell line (BNL1ME) was stably transfected by Egr-TK or Egr-Null (encoding no therapeutic gene). Palpable tumors in BALB/c mice were treated with a localized dose of 25 Gy of radiation followed by ganciclovir (GCV, 100 mg/kg, 14 days). Four treatment cohorts were compared: Egr-Null/GCV + RT + Adeno-LacZ; Egr-Null/GCV + RT + Adeno-Flt3L; Egr-TK/GCV + RT + Adeno-LacZ; and Egr-TK/GCV + RT + Adeno-Flt3L. There was no primary tumor regression in the Egr-Null tumors after radiation therapy alone. In contrast, Egr-TK tumors had nearly complete tumor regression for 3 weeks after radiation therapy (P < 0.01), however, long-term follow-up demonstrated primary tumor recurrence and death secondary to pulmonary metastasis. Flt3L expression was confirmed by serum bioassay (mean = 88 ng/mL) in these animals and Western blotting of tissue culture medium in Adeno-Flt3L-infected BaF/huFlt3L cells. Radiation therapy with Adeno-Flt3L gene therapy effectively retarded primary tumor growth when compared to radiation therapy alone. The trimodality therapy (Egr-TK/GCV + RT + Adeno-Flt3L) was the most efficacious with 40% complete tumor regression (>100 days) and <20% pulmonary metastases, indicating the development of sustained antitumor immune response. These studies provide a rationale for triple modality therapies with radiation-inducible HSV-TK gene therapy and Adeno-Flt3L when used in combination with primary tumor radiation therapy for improved local and systemic control of HCC.


Radiation Research | 2014

An Autologous In Situ Tumor Vaccination Approach for Hepatocellular Carcinoma. 2. Tumor-Specific Immunity and Cure after Radio-Inducible Suicide Gene Therapy and Systemic CD40-Ligand and Flt3-Ligand Gene Therapy in an Orthotopic Tumor Model

Niloy J. Deb; Madhur Garg; Rafi Kabarriti; Zuoheng Fan; Alan A. Alfieri; Jayanta Roy-Chowdhury; Chandan Guha

Diffuse hepatocellular carcinoma (HCC) is a lethal disease that radiation therapy (RT) currently has a limited role in treating because of the potential for developing fatal radiation-induced liver disease. However, recently diffuse HCC, “radio-inducible suicide gene therapy” has been shown to enhance local tumor control and residual microscopic disease within the liver for diffuse HCC, by using a combination of chemoactivation and molecular radiosensitization. We have demonstrated that the addition of recombinant adenovirus-expressing human Flt3 ligand (Adeno-Flt3L) after radio-inducible suicide gene therapy induced a Th1-biased, immune response and enhanced tumor control in an ectopic model of HCC. We hypothesized that sequential administration of recombinant adenovirus-expressing CD40L (Adeno-CD40L) could further potentiate the efficacy of our trimodal therapy with RT + HSV-TK + Adeno-Flt3L. We examined our hypothesis in an orthotopic model of diffuse HCC using BNL1ME A.7R.1 (BNL) cells in Balb/c mice. BNL murine hepatoma cells (5 × 104) transfected with an expression vector of HSV-TK under the control of a radiation-inducible promoter were injected intraportally into BALB/cJ mice. Fourteen days after the HCC injection, mice were treated with a 25 Gy dose of radiation to the whole liver, followed by ganciclovir (GCV) treatment and systemic adenoviral cytokine gene therapy (Flt3L or CD40L or both). Untreated mice died in 27 ± 4 days. Radiation therapy alone had a marginal effect on survival (median = 35 ± 7 days) and the addition of HSV-TK/GCV gene therapy improved the median survival to 47 ± 6 days. However, the addition of Adeno-Flt3L to radiation therapy and HSV-TK/GCV therapy significantly (P = 0.0005) increased survival to a median of 63 ± 20 days with 44% (7/16) of the animals still alive 116 days after tumor implantation. The curative effect of Flt3L was completely abolished when using immunodeficient nude mice or mice depleted for CD4, CD8 and natural killer cells. The addition of Adeno-CD40L further improved the median survival of animals to 80 ± 15 days and this effect was abolished only when using anti-CD8 antibodies. Chromium-51 (51Cr) release assay showed cytotoxic T lymphocyte (CTL) activation, suggesting efficient dendritic cell (DC) activation with CTL activation after the treatment. Furthermore, when surviving mice were rechallenged with BNL-ETK cells on the foot pad, RT + HSV-TK/GCV + Flt3L + CD40L-treated mice developed a small tumor on day 56 but the tumor eventually disappeared after 105 days. Mice treated with RT + HSV-TK/GCV + Flt3L showed a slowed tumor growth curve compared with untreated mice. Therefore, combination therapy using Flt3L to induce DC proliferation and CD40L to enhance DC maturation holds great promise for immunomodulation of radiation therapy to enhance HCC tumor control and prevent progression of disease in patients with diffuse HCC.


Head and Neck-journal for The Sciences and Specialties of The Head and Neck | 2017

Stereotactic body radiotherapy for recurrent head and neck cancer: A critical review

Sujith Baliga; Rafi Kabarriti; Nitin Ohri; Hilda Haynes-Lewis; Ravindra Yaparpalvi; S. Kalnicki; Madhur Garg

The management of patients with recurrent head and neck cancers remains a challenging clinical dilemma. Concerns over toxicity with re‐irradiation have limited its use in the clinical setting. Stereotactic Body Radiation Therapy (SBRT) has emerged as a highly conformal and precise type of radiotherapy and has the advantage of sparing normal tissue. Although SBRT is an attractive treatment modality, its use in the clinic is limited, given the technically challenging nature of the procedure. In this review, we attempt to provide a comprehensive overview of the role of re‐irradiation in patients with recurrent head and neck cancers, with particular attention to the advent of SBRT and its use with systemic therapies such as cetuximab. In the second portion of this review, we present our systematic review of published experiences with SBRT in recurrent head and neck cancers in an attempt to provide data on response rates (RR), overall survival and toxicity.


Hepatology International | 2014

Hedgehog signaling and radiation induced liver injury: a delicate balance

Rafi Kabarriti; Chandan Guha

Radiation-induced liver disease (RILD) is a major limitation of radiation therapy (RT) for the treatment of liver cancer. Emerging data indicate that hedgehog (Hh) signaling plays a central role in liver fibrosis and regeneration after liver injury. Here, we review the potential role of Hh signaling in RILD and propose the temporary use of Hh inhibition during liver RT to radiosensitize HCC tumor cells and inhibit their progression, while blocking the initiation of the radiation-induced fibrotic response in the surrounding normal liver.


Archives of Pathology & Laboratory Medicine | 2015

Effective Biomarkers and Radiation Treatment in Head and Neck Cancer

Thomas J. Ow; Casey E. Pitts; Rafi Kabarriti; Madhur Garg

CONTEXT Radiation is a key arm in the multidisciplinary treatment of patients with head and neck squamous cell carcinoma. During the past 2 decades, significant changes in the way radiation therapy is planned and delivered have improved efficacy and decreased toxicity. Refined approaches in the application of radiation and chemoradiation have led to organ-sparing treatment regimens for laryngeal and pharyngeal cancers and have improved local and regional control rates in the postoperative, adjuvant setting. The molecular and genetic determinants of tumor cell response to radiation have been studied, and several potential biomarkers are emerging that could further improve application and efficacy of radiation treatment in head and neck squamous cell carcinoma. OBJECTIVE To discuss the current understanding of potential biomarkers related to radiation response in head and neck squamous cell carcinoma. DATA SOURCES Existing published literature. CONCLUSIONS Several potential biomarkers are actively being studied as predictors and targets to improve the use and efficacy of radiation therapy to treat head and neck squamous cell carcinoma. Several promising candidates have been defined, and new markers are on the horizon.

Collaboration


Dive into the Rafi Kabarriti's collaboration.

Top Co-Authors

Avatar

S. Kalnicki

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Chandan Guha

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Madhur Garg

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Nitin Ohri

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Ravindra Yaparpalvi

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

W.F. Mourad

Georgia Regents University

View shared research outputs
Top Co-Authors

Avatar

Alan A. Alfieri

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Keyur J. Mehta

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

L. Liu

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

J.L. Fox

Albert Einstein College of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge