Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Raghu Kalluri is active.

Publication


Featured researches published by Raghu Kalluri.


Journal of Clinical Investigation | 2009

The basics of epithelial-mesenchymal transition

Raghu Kalluri; Robert A. Weinberg

The origins of the mesenchymal cells participating in tissue repair and pathological processes, notably tissue fibrosis, tumor invasiveness, and metastasis, are poorly understood. However, emerging evidence suggests that epithelial-mesenchymal transitions (EMTs) represent one important source of these cells. As we discuss here, processes similar to the EMTs associated with embryo implantation, embryogenesis, and organ development are appropriated and subverted by chronically inflamed tissues and neoplasias. The identification of the signaling pathways that lead to activation of EMT programs during these disease processes is providing new insights into the plasticity of cellular phenotypes and possible therapeutic interventions.


Nature Reviews Cancer | 2006

Fibroblasts in cancer

Raghu Kalluri; Michael Zeisberg

Tumours are known as wounds that do not heal — this implies that cells that are involved in angiogenesis and the response to injury, such as endothelial cells and fibroblasts, have a prominent role in the progression, growth and spread of cancers. Fibroblasts are associated with cancer cells at all stages of cancer progression, and their structural and functional contributions to this process are beginning to emerge. Their production of growth factors, chemokines and extracellular matrix facilitates the angiogenic recruitment of endothelial cells and pericytes. Fibroblasts are therefore a key determinant in the malignant progression of cancer and represent an important target for cancer therapies.


Journal of Clinical Investigation | 2003

Epithelial-mesenchymal transition and its implications for fibrosis

Raghu Kalluri; Eric G. Neilson

Epithelial to mesenchymal transition (EMT) is a central mechanism for diversifying the cells found in complex tissues. This dynamic process helps organize the formation of the body plan, and while EMT is well studied in the context of embryonic development, it also plays a role in the genesis of fibroblasts during organ fibrosis in adult tissues. Emerging evidence from studies of renal fibrosis suggests that more than a third of all disease-related fibroblasts originate from tubular epithelia at the site of injury. This review highlights recent advances in the process of EMT signaling in health and disease and how it may be attenuated or reversed by selective cytokines and growth factors.


Journal of Cell Biology | 2006

The epithelial–mesenchymal transition: new insights in signaling, development, and disease

Jonathan M. Lee; Shoukat Dedhar; Raghu Kalluri; Erik W. Thompson

The conversion of an epithelial cell to a mesenchymal cell is critical to metazoan embryogenesis and a defining structural feature of organ development. Current interest in this process, which is described as an epithelial–mesenchymal transition (EMT), stems from its developmental importance and its involvement in several adult pathologies. Interest and research in EMT are currently at a high level, as seen by the attendance at the recent EMT meeting in Vancouver, Canada (October 1–3, 2005). The meeting, which was hosted by The EMT International Association, was the second international EMT meeting, the first being held in Port Douglas, Queensland, Australia in October 2003. The EMT International Association was formed in 2002 to provide an international body for those interested in EMT and the reverse process, mesenchymal–epithelial transition, and, most importantly, to bring together those working on EMT in development, cancer, fibrosis, and pathology. These themes continued during the recent meeting in Vancouver. Discussion at the Vancouver meeting spanned several areas of research, including signaling pathway activation of EMT and the transcription factors and gene targets involved. Also covered in detail was the basic cell biology of EMT and its role in cancer and fibrosis, as well as the identification of new markers to facilitate the observation of EMT in vivo. This is particularly important because the potential contribution of EMT during neoplasia is the subject of vigorous scientific debate (Tarin, D., E.W. Thompson, and D.F. Newgreen. 2005. Cancer Res. 65:5996–6000; Thompson, E.W., D.F. Newgreen, and D. Tarin. 2005. Cancer Res. 65:5991–5995).


Nature Medicine | 2007

Endothelial-to-mesenchymal transition contributes to cardiac fibrosis

Oleg Tarnavski; Michael Zeisberg; Adam L. Dorfman; Julie R. McMullen; Erika Gustafsson; Anil Chandraker; Xueli Yuan; William T. Pu; Anita B. Roberts; Eric G. Neilson; Mohamed H. Sayegh; Seigo Izumo; Raghu Kalluri

Cardiac fibrosis, associated with a decreased extent of microvasculature and with disruption of normal myocardial structures, results from excessive deposition of extracellular matrix, which is mediated by the recruitment of fibroblasts. The source of these fibroblasts is unclear and specific anti-fibrotic therapies are not currently available. Here we show that cardiac fibrosis is associated with the emergence of fibroblasts originating from endothelial cells, suggesting an endothelial-mesenchymal transition (EndMT) similar to events that occur during formation of the atrioventricular cushion in the embryonic heart. Transforming growth factor-β1 (TGF-β1) induced endothelial cells to undergo EndMT, whereas bone morphogenic protein 7 (BMP-7) preserved the endothelial phenotype. The systemic administration of recombinant human BMP-7 (rhBMP-7) significantly inhibited EndMT and the progression of cardiac fibrosis in mouse models of pressure overload and chronic allograft rejection. Our findings show that EndMT contributes to the progression of cardiac fibrosis and that rhBMP-7 can be used to inhibit EndMT and to intervene in the progression of chronic heart disease associated with fibrosis.


Nature Medicine | 2003

BMP-7 counteracts TGF-β1–induced epithelial-to-mesenchymal transition and reverses chronic renal injury

Michael Zeisberg; Jun-ichi Hanai; Hikaru Sugimoto; David M. Charytan; Frank Strutz; Raghu Kalluri

Bone morphogenic protein (BMP)-7 is a 35-kDa homodimeric protein and a member of the transforming growth factor (TGF)-β superfamily. BMP-7 expression is highest in the kidney, and its genetic deletion in mice leads to severe impairment of eye, skeletal and kidney development. Here we report that BMP-7 reverses TGF-β1–induced epithelial-to-mesenchymal transition (EMT) by reinduction of E-cadherin, a key epithelial cell adhesion molecule. Additionally, we provide molecular evidence for Smad-dependent reversal of TGF-β1–induced EMT by BMP-7 in renal tubular epithelial cells and mammary ductal epithelial cells. In the kidney, EMT-induced accumulation of myofibroblasts and subsequent tubular atrophy are considered key determinants of renal fibrosis during chronic renal injury. We therefore tested the potential of BMP-7 to reverse TGF-β1–induced de novo EMT in a mouse model of chronic renal injury. Our results show that systemic administration of recombinant human BMP-7 leads to repair of severely damaged renal tubular epithelial cells, in association with reversal of chronic renal injury. Collectively, these results provide evidence of cross talk between BMP-7 and TGF-β1 in the regulation of EMT in health and disease.


Nature Genetics | 2005

TRPC6 is a glomerular slit diaphragm-associated channel required for normal renal function

Jochen Reiser; Krishna R. Polu; Clemens C. Möller; Peter Kenlan; Mehmet M. Altintas; Changli Wei; Christian Faul; Stephanie Herbert; Ivan Villegas; Carmen Avila-Casado; Mary McGee; Hikaru Sugimoto; Dennis Brown; Raghu Kalluri; Peter Mundel; Paula L. Smith; David E. Clapham; Martin R. Pollak

Progressive kidney failure is a genetically and clinically heterogeneous group of disorders. Podocyte foot processes and the interposed glomerular slit diaphragm are essential components of the permeability barrier in the kidney. Mutations in genes encoding structural proteins of the podocyte lead to the development of proteinuria, resulting in progressive kidney failure and focal segmental glomerulosclerosis. Here, we show that the canonical transient receptor potential 6 (TRPC6) ion channel is expressed in podocytes and is a component of the glomerular slit diaphragm. We identified five families with autosomal dominant focal segmental glomerulosclerosis in which disease segregated with mutations in the gene TRPC6 on chromosome 11q. Two of the TRPC6 mutants had increased current amplitudes. These data show that TRPC6 channel activity at the slit diaphragm is essential for proper regulation of podocyte structure and function.


Journal of Biological Chemistry | 2007

Fibroblasts Derive from Hepatocytes in Liver Fibrosis via Epithelial to Mesenchymal Transition

Michael Zeisberg; Changqing Yang; Margot Martino; Michael B. Duncan; Florian Rieder; Harikrishna Tanjore; Raghu Kalluri

Activated fibroblasts are key contributors to the fibrotic extracellular matrix accumulation during liver fibrosis. The origin of such fibroblasts is still debated, although several studies point to stellate cells as the principal source. The role of adult hepatocytes as contributors to the accumulation of fibroblasts in the fibrotic liver is yet undetermined. Here, we provide evidence that the pro-fibrotic growth factor, TGF-β1, induces adult mouse hepatocytes to undergo phenotypic and functional changes typical of epithelial to mesenchymal transition (EMT). We perform lineage-tracing experiments using AlbCre. R26RstoplacZ double transgenic mice to demonstrate that hepatocytes which undergo EMT contribute substantially to the population of FSP1-positive fibroblasts in CCL4-induced liver fibrosis. Furthermore, we demonstrate that bone morphogenic protein-7 (BMP7), a member of the TGFβ superfamily, which is known to antagonize TGFβ signaling, significantly inhibits progression of liver fibrosis in these mice. BMP7 treatment abolishes EMT-derived fibroblasts, suggesting that the therapeutic effect of BMP7 was at least partially due to the inhibition of EMT. These results provide direct evidence for the functional involvement of adult hepatocytes in the accumulation of activated fibroblasts in the fibrotic liver. Furthermore, our findings suggest that EMT is a promising therapeutic target for the attenuation of liver fibrosis.


Nature | 2015

Glypican-1 identifies cancer exosomes and detects early pancreatic cancer

Sonia A. Melo; Linda B. Luecke; Christoph Kahlert; Agustín F. Fernández; Seth T. Gammon; Judith Kaye; Valerie S. LeBleu; Elizabeth A. Mittendorf; Juergen Weitz; Nuh N. Rahbari; Christoph Reissfelder; Christian Pilarsky; Mario F. Fraga; David Piwnica-Worms; Raghu Kalluri

Exosomes are lipid-bilayer-enclosed extracellular vesicles that contain proteins and nucleic acids. They are secreted by all cells and circulate in the blood. Specific detection and isolation of cancer-cell-derived exosomes in the circulation is currently lacking. Using mass spectrometry analyses, we identify a cell surface proteoglycan, glypican-1 (GPC1), specifically enriched on cancer-cell-derived exosomes. GPC1+ circulating exosomes (crExos) were monitored and isolated using flow cytometry from the serum of patients and mice with cancer. GPC1+ crExos were detected in the serum of patients with pancreatic cancer with absolute specificity and sensitivity, distinguishing healthy subjects and patients with a benign pancreatic disease from patients with early- and late-stage pancreatic cancer. Levels of GPC1+ crExos correlate with tumour burden and the survival of pre- and post-surgical patients. GPC1+ crExos from patients and from mice with spontaneous pancreatic tumours carry specific KRAS mutations, and reliably detect pancreatic intraepithelial lesions in mice despite negative signals by magnetic resonance imaging. GPC1+ crExos may serve as a potential non-invasive diagnostic and screening tool to detect early stages of pancreatic cancer to facilitate possible curative surgical therapy.


Journal of Clinical Investigation | 2009

EMT: When epithelial cells decide to become mesenchymal-like cells

Raghu Kalluri

Epithelial-mesenchymal transition (EMT) is critical for appropriate embryonic development, and this process is re-engaged in adults during wound healing, tissue regeneration, organ fibrosis, and cancer progression. Inflammation is a crucial conspirator in the emergence of EMT in adults but is absent during embryonic development. As highlighted in this Review series, EMT is now a recognized mechanism for dispersing cells in embryos, forming fibroblasts/mesenchymal cells in injured tissues, and initiating metastasis of epithelial cancer cells. Also discussed are proposals to classify EMT into three subtypes, each of which has different functional consequences.

Collaboration


Dive into the Raghu Kalluri's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Valerie S. LeBleu

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Keizo Kanasaki

Kanazawa Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge