Ragnhild E. Paulsen
University of Oslo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ragnhild E. Paulsen.
Brain Research | 1996
Elisabetta Ciani; Lena Grøneng; Manuela Voltattorni; Veslemøy Rolseth; Antonio Contestabile; Ragnhild E. Paulsen
Glutamate kills sensitive neurons through several steps downstream to receptor activation: increased free Ca2+ levels, activation of various enzymes and accumulation of reactive oxygen species (ROS). We have evaluated in a well established model of neuronal cultures the neuroprotective effects of blocking these mechanisms, either singularly or by combining multiple enzyme inhibition and/or ROS scavenging. In vitro cultures of cerebellar granule cells exposed to a toxic concentration of glutamate (100 microM for 15 min in the absence of Mg2+) combined with several pharmacological treatments. Inhibition of nitric oxide synthase (NOS) and phospholipase A2 (PLA2) were effective in decreasing cell death and the combined treatments showed some degree of additivity. By contrast, inhibition of xanthine oxidase (XO) with allopurinol was uneffective. Antioxidants (in particular vitamin e or vitamin E analogs). protected neurons up to more than 50%. A synergistic effect was demonstrated by the combination of vitamin E and C. On the other hand, antioxidants did not increase the protection granted by enzyme inhibitors, suggesting that they act downstream to NOS and PLA2. In conclusion, NOS and PLA2 activated by Ca2+ influx give rise to reactive oxygen species whose deleterious action can be counteracted either by inhibiting these enzymes or by scavenging the excess of free radicals produced by them. Finally, a moderate protection was obtained by blocking protein synthesis with cycloheximide, suggesting a partial contribution of apoptotic mechanisms to the excitotoxic cell death.
Journal of Molecular Neuroscience | 1995
Ragnhild E. Paulsen; Kjersti Granås; Helge Johnsen; Veslemøy Rolseth; Sigrun H. Sterri
Three related orphan nuclear receptors that are expressed in the brain, NGFI-B, Nurr1, and NOR-1, were studied to compare their function as transcriptional activators. NGFI-B was able to activate (in the absence of added hormone) in CV1 cells both an NGFI-B-responsive luciferase reporter gene (containing eight copies of a response element for NGFI-B upstream of a basal prolactin promoter driving the luciferase gene, NBRE8-LUC), a similar thyroid hormone-receptor-responsive reporter gene (TRE3-LUC), and a reporter gene with an authentic promoter from aXenopus vitellogenin gene containing two binding sites for the estrogen receptor (vit-LUC). NGFI-B activated NBRE8-LUC and TRE3-LUC (but not the vit-LUC) with an amino-terminal activation domain. Nurr1 was less promiscuous as a transcriptional activator, activating the NBRE8-LUC better than NGFI-B, but less than NGFI-B at the other reporter genes. NOR-1 activated only the NBRE8-LUC reporter gene. These results indicate that closely related nuclear receptors may differentiate between response elements or promoters and that different activation mechanisms exist depending on the promoter. This may contribute to regulation of specificity of target gene expression in the brain.
Hepatology | 2005
Carola M. Rosseland; Lene Wierød; Morten P. Oksvold; Heidi Werner; Anne Carine Østvold; G. Hege Thoresen; Ragnhild E. Paulsen; Henrik S. Huitfeldt; Ellen Skarpen
Reactive oxygen species (ROS) are implicated in tissue damage causing primary hepatic dysfunction following ischemia/reperfusion injury and during inflammatory liver diseases. A potential role of extracellular signal‐regulated kinase (ERK) as a mediator of survival signals during oxidative stress was investigated in primary cultures of hepatocytes exposed to ROS. Hydrogen peroxide (H2O2) induced a dose‐dependent activation of ERK, which was dependent on MEK activation. The ERK activation pattern was transient compared with the ERK activation seen after stimulation with epidermal growth factor (EGF). Nuclear accumulation of ERK was found after EGF stimulation, but not after H2O2 exposure. A slow import/rapid export mechanism was excluded through the use of leptomycin B, an inhibitor of nuclear export sequence–dependent nuclear export. Reduced survival of hepatocytes during ROS exposure was observed when ERK activation was inhibited. Ribosomal S6 kinase (RSK), a cytoplasmic ERK substrate involved in cell survival, was activated and located in the nucleus of H2O2‐exposed hepatocytes. The activation was abolished when ERK was inhibited with U0126. In conclusion, our results indicate that activity of ERK in the cytoplasm is important for survival during oxidative stress in hepatocytes and that RSK is activated downstream of ERK. Supplementary material for this article can be found on the HEPATOLOGY website (http://www.interscience.wiley.com/jpages/0270‐9139/suppmat/index.html). (HEPATOLOGY 2005;42:200–207.)
European Journal of Cell Biology | 2001
Morten P. Oksvold; Ellen Skarpen; Lene Wierød; Ragnhild E. Paulsen; Henrik S. Huitfeldt
The rapid internalization of receptor tyrosine kinases after ligand binding has been assumed to be a negative modulation of signal transduction. However, accumulating data indicate that signal transduction from internalized cell surface receptors also occurs from endosomes. We show that a substantial fraction of tyrosine-phosphorylated epidermal growth factor receptor (EGFR) and Shc, Grb2 and Cbl after internalization relocates from early endosomes to compartments which are negative for the early endosomes, recycling vesicle markers EEA1 and transferrin in EGF-stimulated cells. These compartments contained the multivesicular body and late endosome marker CD63, and the late endosome and lysosome marker LAMP-1, and showed a multivesicular morphology. Subcellular fractionation revealed that activated EGFR, adaptor proteins and activated ERK 1 and 2 were located in EEA1-negative and LAMP-1-positive fractions. Co-immunoprecipitations showed EGFR in complex with both Shc, Grb2 and Cbl. Treatment with the weak base chloroquine or inhibitors of lysosomal enzymes after EGF stimulation induced an accumulation of tyrosine-phosphorylated EGFR and Shc in EEA1-negative and CD63-positive vesicles after a 120-min chase period. This was accompanied by a sustained activation of ERK 1 and 2. These results suggest that EGFR signaling is not spatially restricted to the plasma membrane, primary vesicles and early endosomes, but is continuing from late endocytic trafficking organelles maturing from early endosomes.
Journal of Biological Chemistry | 2004
Chris M. Jacobs; Karen A. Boldingh; Hege H. Slagsvold; G. Hege Thoresen; Ragnhild E. Paulsen
Transcription factor NGFI-B (neuronal growth factor-induced clone B), also called Nur77 or TR3, is an immediate early gene and an orphan member of the nuclear receptor family. The NGFI-B protein also has a function distinct from that of a transcription factor; it translocates to mitochondria to initiate apoptosis. Recently, it was demonstrated that NGFI-B interacts with Bcl-2 by inducing a conformational change in Bcl-2, converting it from protector to a killer (Lin, B., Kolluri, S. K., Lin, F., Liu, W., Han, Y. H., Cao, X., Dawson, M. I., Reed, J. C., and Zhang, X. K. (2004) Cell 116, 527–540). After exposing rat cerebellar granule neurons to glutamate (100 μm, 15 min), NGFI-B translocated to the mitochondria. Growth factors such as the epidermal growth factor activate the MAP kinase ERK, the activity of which may determine whether a cell survives or undergoes apoptosis. In the present study we found that the epidermal growth factor activated ERK2 in cerebellar granule neurons and that this activation prohibited glutamate-induced subcellular translocation of NGFI-B. Likewise, overexpressed active ERK2 resulted in a predominant nuclear localization of green fluorescent protein-tagged NGFI-B. Thus, activation of ERK2 may overcome apoptosis-induced subcellular translocation of NGFI-B. This finding represents a novel and rapid growth factor survival pathway that is independent of gene regulation.
Experimental Brain Research | 1993
J. Berg-Johnsen; Ragnhild E. Paulsen; Frode Fonnum; I. A. Langmoen
SummaryFluorocitrate inhibits the glial tricarboxylic acid cycle and thereby the synthesis of glutamine, which is the main precursor for transmitter glutamate. We investigated the possibility that there is a functional correlate to fluorocitrate action by recording evoked field potentials in rat hippocampal slices. The excitatory postsynaptic potential (field-EPSP) was markedly depressed after 7–8 h of fluorocitrate action. The population spike was also reduced, but a major part of the reduction may be the result of weaker synaptic activation rather than reduced excitability of the postsynaptic cells. The activity of thin unmyelinated fibres was only slightly affected. Preceding the changes in the field-EPSP there was a decrease in the glutamine content in the fluorocitrate treated slices relative to controls. Only a small decrease in tissue glutamate was seen concomitantly with the synaptic failure, probably because the transmitter pool of glutamate in those fibres stimulated makes little contribution to the total tissue glutamate.
Brain Research | 1992
Trond Myhrer; Ragnhild E. Paulsen
It has previously been shown that disruptions of fiber connections between the temporal cortex (TC) and the lateral entorhinal cortex (LEC) in rats result in severely impaired retention of a simultaneous brightness discrimination task. This memory impairment is accompanied by reduced high affinity D-aspartate uptake in both TC and LEC. The purpose of this study was to investigate whether systemic administration of glutamergic agonists might ameliorate the mnemonic dysfunction seen to follow TC/LEC transections. The results from Experiment 1 show that agonists acting selectively at the NMDA receptors (NMDA and glycine) or the quisqualate receptors (AMPA) produced complete amelioration of the memory deficit. Injection of kainic acid only produced a slight improvement of memory. The results from Experiment 2 show that the positive effects of agonists are probably not attributable to peripheral adrenergic mechanisms, because blockade of sympathetic terminal release did not prevent mitigating effect of glycine. The results are discussed in terms of possible central nervous mechanisms interfered with by the various agonists.
Brain Research | 2003
Hege H. Slagsvold; Carola M. Rosseland; Chris M. Jacobs; Erica Khuong; Nina Kristoffersen; Mona Gaarder; Åsa B. Fallgren; Henrik S. Huitfeldt; Ragnhild E. Paulsen
Many recent reports on internucleosomal DNA fragments have appeared, however, little is known about the mechanisms of the generation of their upstream high molecular weight (HMW) fragments. Caspases are a family of proteases with important functions in the execution of apoptotic cell death. The caspase-sensitivity of the formation of HMW fragments was therefore investigated using a specific caspase-3 inhibitor (Ac-DEVD-cmk) and a general caspase inhibitor (boc-D-fmk). Apoptosis inducing factor (AIF) can translocate to the nucleus and generate HMW fragments independently of caspase. Cultures of cerebellar granule neurons (CGNs) were therefore exposed to glutamate (100 micro M) or deprived of potassium and serum to induce apoptosis, or treated with a high concentration of calcium ionophore A23187 (1 micro M) to induce necrosis. Fragmentation of DNA into two classes of HMW fragments (>680 and 50-300 kbp) was observed after treatment with glutamate or A23187. Traces of approximately 50-kbp fragments were detectable after the K(+)/serum-deprivation. The amount of >680-kbp HMW fragments increased (i.e. their further degradation was inhibited) and cell death was reduced in the presence of Ac-DEVD-cmk or boc-D-fmk following glutamate treatment. Only boc-D-fmk treatment resulted in a similar accumulation of >680-kbp HMW fragments and reduced cell death after K(+)/serum-deprivation. No such changes were observed with caspase inhibitors after A23187 treatment. AIF redistribution was observed following glutamate treatment and K(+)/serum-deprivation. Thus, even in a simple cell culture of CGNs, HMW fragments are formed by diverse mechanisms: the degradation of DNA may be sensitive to different caspases or be caspase and AIF independent.
Brain Research | 2008
Petra Aden; Ingeborg Løstegaard Goverud; Knut Liestøl; Else Marit Løberg; Ragnhild E. Paulsen; Jan Mæhlen; Jon Lømo
High-potency glucocorticoids (GC) are used in the prophylaxis and treatment of neonatal bronchopulmonal dysplasia, but there is concern about side effects on the developing brain. Recently, the low-potency GC hydrocortisone (HC) has been suggested as an alternative to high-potency GC. We compared the neurotoxic effects of HC with the high-potency GC dexamethasone (DEX) in chicken cerebellum. A single dose of GC was injected into the egg at embryonic day 16 and the death of granule neurons in histologic sections of the cerebellar cortex was examined 24 h later. DEX and HC showed a similar dose-dependent induction of morphological apoptosis and caspase-3 activation in the internal granular layer. A doubling of the apoptosis rate compared to the basal rate was seen for the highest dose of DEX (5 mg/kg) and medium dose of HC (1 mg/kg). In cultures of embryonic chicken cerebellar granule cells, DEX and HC increased cell death and induced rapid caspase-3 activation in a similar dose-dependent manner. Transfection of granule cells with a luciferase reporter gene revealed that the dose needed for the activation of gene transcription (classical signalling pathway) with DEX was much lower than for HC. In conclusion, HC does not present itself as a safer drug than DEX in this model. In addition, it appears that DEX and HC induce apoptosis in immature granule neurons via a non-genomic (non-classical) mechanism.
Brain Research | 2006
Chris M. Jacobs; Minh D. Trinh; Terje Rootwelt; Jon Lømo; Ragnhild E. Paulsen
Since dexamethasone may elevate the Ca2+ influx through NMDA receptors, we have investigated mechanisms of dexamethasone toxicity in rat cerebellar granule neurons. Dexamethasone concentrations over 0.1 microM induced cell death that reached about 20% of the death induced by glutamate. Dexamethasone-induced cell death was reduced by more than 80% by the mineralocorticoid antagonist RU 28318 or the NMDA receptor antagonists MK 801 and CGP 39551, whereas RU 28318 rescued only approximately 30% of cells treated with glutamate, indicating that dexamethasone requires NMDA receptors to induce acute neuronal toxicity and that a fraction of the neurons showed this toxicity. Mg2+ reduced the cell death induced by glutamate at potassium concentrations of 1 mM and 5 mM, but not at 25 mM. In contrast, cell death induced by dexamethasone was not significantly reduced by Mg2+ in any of the potassium concentrations. Both glutamate and dexamethasone induced toxicity with translocation of the apoptosis inducer NGFI-B to the mitochondria seen after 30 min-2 h concomitant with activation of apoptosis inducing factor (AIF) and caspase-3. In conclusion, dexamethasone induces a rapid toxicity which is blocked by NMDA receptor antagonists other than Mg2+, and involves mitochondrial apoptosis inducer NGFI-B.