Ragnhildur Káradóttir
Medical Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ragnhildur Káradóttir.
Nature | 2005
Ragnhildur Káradóttir; Pauline Cavelier; Linda H. Bergersen; David Attwell
Glutamate-mediated damage to oligodendrocytes contributes to mental or physical impairment in periventricular leukomalacia (pre- or perinatal white matter injury leading to cerebral palsy), spinal cord injury, multiple sclerosis and stroke. Unlike neurons, white matter oligodendrocytes reportedly lack NMDA (N-methyl-d-aspartate) receptors. It is believed that glutamate damages oligodendrocytes, especially their precursor cells, by acting on calcium-permeable AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid)/kainate receptors alone or by reversing cystine–glutamate exchange and depriving cells of antioxidant protection. Here we show that precursor, immature and mature oligodendrocytes in the white matter of the cerebellum and corpus callosum exhibit NMDA-evoked currents, mediated by receptors that are blocked only weakly by Mg2+ and that may contain NR1, NR2C and NR3 NMDA receptor subunits. NMDA receptors are present in the myelinating processes of oligodendrocytes, where the small intracellular space could lead to a large rise in intracellular ion concentration in response to NMDA receptor activation. Simulating ischaemia led to development of an inward current in oligodendrocytes, which was partly mediated by NMDA receptors. These results point to NMDA receptors of unusual subunit composition as a potential therapeutic target for preventing white matter damage in a variety of diseases.
Neuroscience | 2007
Ragnhildur Káradóttir; David Attwell
Oligodendrocytes are crucial to the function of the mammalian brain: they increase the action potential conduction speed for a given axon diameter and thus facilitate the rapid flow of information between different brain areas. The proliferation and differentiation of developing oligodendrocytes, and their myelination of axons, are partly controlled by neurotransmitters. In addition, in models of conditions like stroke, periventricular leukomalacia leading to cerebral palsy, spinal cord injury and multiple sclerosis, oligodendrocytes are damaged by glutamate and, contrary to dogma, it has recently been discovered that this damage is mediated in part by N-methyl-d-aspartate receptors. Mutations in oligodendrocyte neurotransmitter receptors or their interacting proteins may cause defects in CNS function. Here we review the roles of neurotransmitter receptors in the normal function, and malfunction in pathological conditions, of oligodendrocytes.
The EMBO Journal | 2014
Sandra Blanco; Sabine Dietmann; Joana V. Flores; Shobbir Hussain; Claudia Kutter; Peter Humphreys; Margus Lukk; Patrick Lombard; Lucas Treps; Martyna Popis; Stefanie Kellner; Sabine M. Hölter; Lillian Garrett; Wolfgang Wurst; Lore Becker; Thomas Klopstock; Helmut Fuchs; Valérie Gailus-Durner; Martin Hrabĕ de Angelis; Ragnhildur Káradóttir; Mark Helm; Jernej Ule; Joseph G. Gleeson; Duncan T. Odom; Michaela Frye
Mutations in the cytosine‐5 RNA methyltransferase NSun2 cause microcephaly and other neurological abnormalities in mice and human. How post‐transcriptional methylation contributes to the human disease is currently unknown. By comparing gene expression data with global cytosine‐5 RNA methylomes in patient fibroblasts and NSun2‐deficient mice, we find that loss of cytosine‐5 RNA methylation increases the angiogenin‐mediated endonucleolytic cleavage of transfer RNAs (tRNA) leading to an accumulation of 5′ tRNA‐derived small RNA fragments. Accumulation of 5′ tRNA fragments in the absence of NSun2 reduces protein translation rates and activates stress pathways leading to reduced cell size and increased apoptosis of cortical, hippocampal and striatal neurons. Mechanistically, we demonstrate that angiogenin binds with higher affinity to tRNAs lacking site‐specific NSun2‐mediated methylation and that the presence of 5′ tRNA fragments is sufficient and required to trigger cellular stress responses. Furthermore, the enhanced sensitivity of NSun2‐deficient brains to oxidative stress can be rescued through inhibition of angiogenin during embryogenesis. In conclusion, failure in NSun2‐mediated tRNA methylation contributes to human diseases via stress‐induced RNA cleavage.
PLOS Biology | 2013
Iben Lundgaard; Aryna Luzhynskaya; John Henry Stockley; Zhen Wang; Kimberley Evans; Matthew Swire; Katrin Volbracht; Helene Odile Gautier; Robin J.M. Franklin; Charles ffrench-Constant; David Attwell; Ragnhildur Káradóttir
Neuregulin switches oligodendrocytes between two modes of myelination: from a neuronal activity–independent mode to a myelin-increasing, neuronal activity–dependent, mechanism that involves glutamate release and NMDA receptor activation.
Journal of Biomechanics | 2010
Andreas F. Christ; Kristian Franze; Helene Odile Gautier; Pouria Moshayedi; James W. Fawcett; Robin J.M. Franklin; Ragnhildur Káradóttir; Jochen Guck
The mechanical properties of tissues are increasingly recognized as important cues for cell physiology and pathology. Nevertheless, there is a sparsity of quantitative, high-resolution data on mechanical properties of specific tissues. This is especially true for the central nervous system (CNS), which poses particular difficulties in terms of preparation and measurement. We have prepared thin slices of brain tissue suited for indentation measurements on the micrometer scale in a near-native state. Using a scanning force microscope with a spherical indenter of radius ∼20μm we have mapped the effective elastic modulus of rat cerebellum with a spatial resolution of 100μm. We found significant differences between white and gray matter, having effective elastic moduli of K=294±74 and 454±53Pa, respectively, at 3μm indentation depth (n(g)=245, n(w)=150 in four animals, p<0.05; errors are SD). In contrast to many other measurements on larger length scales, our results were constant for indentation depths of 2-4μm indicating a regime of linear effective elastic modulus. These data, assessed with a direct mechanical measurement, provide reliable high-resolution information and serve as a quantitative basis for further neuromechanical investigations on the mechanical properties of developing, adult and damaged CNS tissue.
The Journal of Neuroscience | 2005
Nicola J. Allen; Ragnhildur Káradóttir; David Attwell
During brain anoxia or ischemia, a decrease in the level of ATP leads to a sudden decrease in transmembrane ion gradients [anoxic depolarization (AD)]. This releases glutamate by reversing the operation of glutamate transporters, which triggers neuronal death. By whole-cell clamping CA1 pyramidal cells, we investigated the energy stores that delay the occurrence of the AD in hippocampal slices when O2 and glucose are removed. With glycolytic and mitochondrial ATP production blocked in P12 slices, the AD occurred in ∼7 min at 33°C, reflecting the time needed for metabolic activity to consume the existing ATP and phosphocreatine, and for subsequent ion gradient decrease. Allowing glycolysis fueled by glycogen, in the absence of glucose, delayed the AD by 5.5 min, whereas superfused glucose prevented the AD for >1 h. With glycolysis blocked, the latency to the AD was 6.5 min longer when mitochondria were allowed to function, demonstrating that metabolites downstream of glycolysis (pyruvate, citric acid cycle intermediates, and amino acid oxidation) provide a significant energy store for oxidative phosphorylation. With glycolysis blocked but mitochondria functioning, superfusing lactate did not significantly delay the AD, showing that ATP production from lactate is much less than that from endogenous metabolites. These data demonstrate a preferential role for glycolysis in preventing the AD. They also define a hierarchy of pool sizes for hippocampal energy stores and suggest that brain ATP production from glial lactate may not be significant in conditions of energy deprivation.
Pflügers Archiv: European Journal of Physiology | 2004
Nicola J. Allen; Ragnhildur Káradóttir; David Attwell
A dysfunction of amino acid neurotransmitter transporters occurs in a number of central nervous system disorders, including stroke, epilepsy, cerebral palsy and amyotrophic lateral sclerosis. This dysfunction can comprise a reversal of transport direction, leading to the release of neurotransmitter into the extracellular space, or an alteration in transporter expression level. This review analyses the role of glutamate and GABA transporters in the pathogenesis and therapy of a number of acute and chronic neurological disorders.
Neuroscience | 2009
Yamina Bakiri; V. Burzomato; G. Frugier; Nicola B. Hamilton; Ragnhildur Káradóttir; David Attwell
Glutamatergic signaling has been exceptionally well characterized in the brains gray matter, where it underlies fast information processing, learning and memory, and also generates the neuronal damage that occurs in pathological conditions such as stroke. The role of glutamatergic signaling in the white matter, an area until recently thought to be devoid of synapses, is less well understood. Here we review what is known, and highlight what is not known, of glutamatergic signaling in the white matter. We focus on how glutamate is released, the location and properties of the receptors it acts on, the interacting molecules that may regulate trafficking or signaling of the receptors, the possible functional roles of glutamate in the white matter, and its pathological effects including the possibility of treating white matter disorders with glutamate receptor blockers.
Nature Communications | 2015
Helene Odile Gautier; Kimberley Evans; Katrin Volbracht; Rachel James; Sergey Sitnikov; Iben Lundgaard; Fiona James; Cristina Lao-Peregrin; Richard Reynolds; Robin J.M. Franklin; Ragnhildur Káradóttir
Myelin regeneration can occur spontaneously in demyelinating diseases such as multiple sclerosis (MS). However, the underlying mechanisms and causes of its frequent failure remain incompletely understood. Here we show, using an in-vivo remyelination model, that demyelinated axons are electrically active and generate de novo synapses with recruited oligodendrocyte progenitor cells (OPCs), which, early after lesion induction, sense neuronal activity by expressing AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid)/kainate receptors. Blocking neuronal activity, axonal vesicular release or AMPA receptors in demyelinated lesions results in reduced remyelination. In the absence of neuronal activity there is a ∼6-fold increase in OPC number within the lesions and a reduced proportion of differentiated oligodendrocytes. These findings reveal that neuronal activity and release of glutamate instruct OPCs to differentiate into new myelinating oligodendrocytes that recover lost function. Co-localization of OPCs with the presynaptic protein VGluT2 in MS lesions implies that this mechanism may provide novel targets to therapeutically enhance remyelination.
Neuroscience | 2014
Kristine B. Walhovd; Heidi Johansen-Berg; Ragnhildur Káradóttir
Highlights • White matter macrostructural measurements explained.• Introduction to how MRI imaging can be used to understand changes within the white matter.• Estimation of the white matter microstructures, cells and axons, occupying an imaging voxel.• Biological methods used for white matter studies explained.