Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rahul Narain is active.

Publication


Featured researches published by Rahul Narain.


international conference on computer graphics and interactive techniques | 2009

Aggregate dynamics for dense crowd simulation

Rahul Narain; Abhinav Golas; Sean Curtis; Ming C. Lin

Large dense crowds show aggregate behavior with reduced individual freedom of movement. We present a novel, scalable approach for simulating such crowds, using a dual representation both as discrete agents and as a single continuous system. In the continuous setting, we introduce a novel variational constraint called unilateral incompressibility, to model the large-scale behavior of the crowd, and accelerate inter-agent collision avoidance in dense scenarios. This approach makes it possible to simulate very large, dense crowds composed of up to a hundred thousand agents at near-interactive rates on desktop computers.


international conference on computer graphics and interactive techniques | 2012

Adaptive anisotropic remeshing for cloth simulation

Rahul Narain; Armin Samii; James F. O'Brien

We present a technique for cloth simulation that dynamically refines and coarsens triangle meshes so that they automatically conform to the geometric and dynamic detail of the simulated cloth. Our technique produces anisotropic meshes that adapt to surface curvature and velocity gradients, allowing efficient modeling of wrinkles and waves. By anticipating buckling and wrinkle formation, our technique preserves fine-scale dynamic behavior. Our algorithm for adaptive anisotropic remeshing is simple to implement, takes up only a small fraction of the total simulation time, and provides substantial computational speedup without compromising the fidelity of the simulation. We also introduce a novel technique for strain limiting by posing it as a nonlinear optimization problem. This formulation works for arbitrary non-uniform and anisotropic meshes, and converges more rapidly than existing solvers based on Jacobi or Gauss-Seidel iterations.


international conference on computer graphics and interactive techniques | 2008

Fast animation of turbulence using energy transport and procedural synthesis

Rahul Narain; Jason Sewall; Mark Carlson; Ming C. Lin

We present a novel technique for the animation of turbulent fluids by coupling a procedural turbulence model with a numerical fluid solver to introduce subgrid-scale flow detail. From the large-scale flow simulated by the solver, we model the production and behavior of turbulent energy using a physically motivated energy model. This energy distribution is used to synthesize an incompressible turbulent velocity field, whose features show plausible temporal behavior through a novel Lagrangian approach for advected noise. The synthesized turbulent flow has a dynamical effect on the large-scale flow, and produces visually plausible detailed features on both gaseous and free-surface liquid flows. Our method is an order of magnitude faster than full numerical simulation of equivalent resolution, and requires no manual direction.


IEEE Transactions on Visualization and Computer Graphics | 2009

Efficient and Accurate Sound Propagation Using Adaptive Rectangular Decomposition

Nikunj Raghuvanshi; Rahul Narain; Ming C. Lin

Accurate sound rendering can add significant realism to complement visual display in interactive applications, as well as facilitate acoustic predictions for many engineering applications, like accurate acoustic analysis for architectural design. Numerical simulation can provide this realism most naturally by modeling the underlying physics of wave propagation. However, wave simulation has traditionally posed a tough computational challenge. In this paper, we present a technique which relies on an adaptive rectangular decomposition of 3D scenes to enable efficient and accurate simulation of sound propagation in complex virtual environments. It exploits the known analytical solution of the Wave Equation in rectangular domains, and utilizes an efficient implementation of the Discrete Cosine Transform on Graphics Processors (GPU) to achieve at least a 100-fold performance gain compared to a standard Finite-Difference Time-Domain (FDTD) implementation with comparable accuracy, while also being 10-fold more memory efficient. Consequently, we are able to perform accurate numerical acoustic simulation on large, complex scenes in the kilohertz range. To the best of our knowledge, it was not previously possible to perform such simulations on a desktop computer. Our work thus enables acoustic analysis on large scenes and auditory display for complex virtual environments on commodity hardware.


international conference on computer graphics and interactive techniques | 2013

Folding and crumpling adaptive sheets

Rahul Narain; Tobias Pfaff; James F. O'Brien

We present a technique for simulating plastic deformation in sheets of thin materials, such as crumpled paper, dented metal, and wrinkled cloth. Our simulation uses a framework of adaptive mesh refinement to dynamically align mesh edges with folds and creases. This framework allows efficient modeling of sharp features and avoids bend locking that would be otherwise caused by stiff in-plane behavior. By using an explicit plastic embedding space we prevent remeshing from causing shape diffusion. We include several examples demonstrating that the resulting method realistically simulates the behavior of thin sheets as they fold and crumple.


international conference on computer graphics and interactive techniques | 2010

Free-flowing granular materials with two-way solid coupling

Rahul Narain; Abhinav Golas; Ming C. Lin

We present a novel continuum-based model that enables efficient simulation of granular materials. Our approach fully solves the internal pressure and frictional stresses in a granular material, thereby allows visually noticeable behaviors of granular materials to be reproduced, including freely dispersing splashes without cohesion, and a global coupling between friction and pressure. The full treatment of internal forces in the material also enables two-way interaction with solid bodies. Our method achieves these results at only a very small fraction of computational costs of the comparable particle-based models for granular flows.


interactive 3d graphics and games | 2013

Hybrid long-range collision avoidance for crowd simulation

Abhinav Golas; Rahul Narain; Ming C. Lin

Local collision avoidance algorithms in crowd simulation often ignore agents beyond a neighborhood of a certain size. This cutoff can result in sharp changes in trajectory when large groups of agents enter or exit these neighborhoods. In this work, we exploit the insight that exact collision avoidance is not necessary between agents at such large distances, and propose a novel algorithm for extending existing collision avoidance algorithms to perform approximate, long-range collision avoidance. Our formulation performs long-range collision avoidance for distant agent groups to efficiently compute trajectories that are smoother than those obtained with state-of-the-art techniques and at faster rates. Comparison to real-world data demonstrates that crowds simulated with our algorithm exhibit an improved speed sensitivity to density similar to human crowds. Another issue often sidestepped in existing work is that discrete and continuum collision avoidance algorithms have different regions of applicability. For example, low-density crowds cannot be modeled as a continuum, while high-density crowds can be expensive to model using discrete methods. We formulate a hybrid technique for crowd simulation which can accurately and efficiently simulate crowds at any density with seamless transitions between continuum and discrete representations. Our approach blends results from continuum and discrete algorithms, based on local density and velocity variance. In addition to being robust across a variety of group scenarios, it is also highly efficient, running at interactive rates for thousands of agents on portable systems.


international conference on computer graphics and interactive techniques | 2014

Adaptive tearing and cracking of thin sheets

Tobias Pfaff; Rahul Narain; Juan Miguel de Joya; James F. O'Brien

This paper presents a method for adaptive fracture propagation in thin sheets. A high-quality triangle mesh is dynamically restructured to adaptively maintain detail wherever it is required by the simulation. These requirements include refining where cracks are likely to either start or advance. Refinement ensures that the stress distribution around the crack tip is well resolved, which is vital for creating highly detailed, realistic crack paths. The dynamic meshing framework allows subsequent coarsening once areas are no longer likely to produce cracking. This coarsening allows efficient simulation by reducing the total number of active nodes and by preventing the formation of thin slivers around the crack path. A local reprojection scheme and a substepping fracture process help to ensure stability and prevent a loss of plasticity during remeshing. By including bending and stretching plasticity models, the method is able to simulate a large range of materials with very different fracture behaviors.


international conference on computer graphics and interactive techniques | 2015

Optimal presentation of imagery with focus cues on multi-plane displays

Rahul Narain; Rachel A. Albert; Abdullah Bulbul; Gregory John Ward; Martin S. Banks; James F. O'Brien

We present a technique for displaying three-dimensional imagery of general scenes with nearly correct focus cues on multi-plane displays. These displays present an additive combination of images at a discrete set of optical distances, allowing the viewer to focus at different distances in the simulated scene. Our proposed technique extends the capabilities of multi-plane displays to general scenes with occlusions and non-Lambertian effects by using a model of defocus in the eye of the viewer. Requiring no explicit knowledge of the scene geometry, our technique uses an optimization algorithm to compute the images to be displayed on the presentation planes so that the retinal images when accommodating to different distances match the corresponding retinal images of the input scene as closely as possible. We demonstrate the utility of the technique using imagery acquired from both synthetic and real-world scenes, and analyze the systems characteristics including bounds on achievable resolution.


international conference on computer graphics and interactive techniques | 2012

Large-scale fluid simulation using velocity-vorticity domain decomposition

Abhinav Golas; Rahul Narain; Jason Sewall; Pavel Krajcevski; Pradeep Dubey; Ming C. Lin

Simulating fluids in large-scale scenes with appreciable quality using state-of-the-art methods can lead to high memory and compute requirements. Since memory requirements are proportional to the product of domain dimensions, simulation performance is limited by memory access, as solvers for elliptic problems are not compute-bound on modern systems. This is a significant concern for large-scale scenes. To reduce the memory footprint and memory/compute ratio, vortex singularity bases can be used. Though they form a compact bases for incompressible vector fields, robust and efficient modeling of nonrigid obstacles and free-surfaces can be challenging with these methods. We propose a hybrid domain decomposition approach that couples Eulerian velocity-based simulations with vortex singularity simulations. Our formulation reduces memory footprint by using smaller Eulerian domains with compact vortex bases, thereby improving the memory/compute ratio, and simulation performance by more than 1000x for single phase flows as well as significant improvements for free-surface scenes. Coupling these two heterogeneous methods also affords flexibility in using the most appropriate method for modeling different scene features, as well as allowing robust interaction of vortex methods with free-surfaces and nonrigid obstacles.

Collaboration


Dive into the Rahul Narain's collaboration.

Top Co-Authors

Avatar

Ming C. Lin

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Abhinav Golas

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dinesh Manocha

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Sean Curtis

University of North Carolina at Chapel Hill

View shared research outputs
Researchain Logo
Decentralizing Knowledge