Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rahul Roychoudhuri is active.

Publication


Featured researches published by Rahul Roychoudhuri.


Journal of Clinical Investigation | 2013

Inhibiting glycolytic metabolism enhances CD8+ T cell memory and antitumor function

Madhusudhanan Sukumar; Jie Liu; Yun Ji; Murugan Subramanian; Joseph G. Crompton; Zhiya Yu; Rahul Roychoudhuri; Douglas C. Palmer; Pawel Muranski; Edward D. Karoly; Robert P. Mohney; Christopher A. Klebanoff; Ashish Lal; Toren Finkel; Nicholas P. Restifo; Luca Gattinoni

Naive CD8+ T cells rely upon oxidation of fatty acids as a primary source of energy. After antigen encounter, T cells shift to a glycolytic metabolism to sustain effector function. It is unclear, however, whether changes in glucose metabolism ultimately influence the ability of activated T cells to become long-lived memory cells. We used a fluorescent glucose analog, 2-NBDG, to quantify glucose uptake in activated CD8+ T cells. We found that cells exhibiting limited glucose incorporation had a molecular profile characteristic of memory precursor cells and an increased capacity to enter the memory pool compared with cells taking up high amounts of glucose. Accordingly, enforcing glycolytic metabolism by overexpressing the glycolytic enzyme phosphoglycerate mutase-1 severely impaired the ability of CD8+ T cells to form long-term memory. Conversely, activation of CD8+ T cells in the presence of an inhibitor of glycolysis, 2-deoxyglucose, enhanced the generation of memory cells and antitumor functionality. Our data indicate that augmenting glycolytic flux drives CD8+ T cells toward a terminally differentiated state, while its inhibition preserves the formation of long-lived memory CD8+ T cells. These results have important implications for improving the efficacy of T cell-based therapies against chronic infectious diseases and cancer.


Immunity | 2011

Th17 Cells Are Long Lived and Retain a Stem Cell-like Molecular Signature

Pawel Muranski; Zachary A. Borman; Sid P. Kerkar; Christopher A. Klebanoff; Yun Ji; Luis Sanchez-Perez; Madhusudhanan Sukumar; Robert N. Reger; Zhiya Yu; Steven J. Kern; Rahul Roychoudhuri; Gabriela A. Ferreyra; Wei Shen; Scott K. Durum; Lionel Feigenbaum; Douglas C. Palmer; Paul A. Antony; Chi-Chao Chan; Arian Laurence; Robert L. Danner; Luca Gattinoni; Nicholas P. Restifo

Th17 cells have been described as short lived, but this view is at odds with their capacity to trigger protracted damage to normal and transformed tissues. We report that Th17 cells, despite displaying low expression of CD27 and other phenotypic markers of terminal differentiation, efficiently eradicated tumors and caused autoimmunity, were long lived, and maintained a core molecular signature resembling early memory CD8(+) cells with stem cell-like properties. In addition, we found that Th17 cells had high expression of Tcf7, a direct target of the Wnt and β-catenin signaling axis, and accumulated β-catenin, a feature observed in stem cells. In vivo, Th17 cells gave rise to Th1-like effector cell progeny and also self-renewed and persisted as IL-17A-secreting cells. Multipotency was required for Th17 cell-mediated tumor eradication because effector cells deficient in IFN-γ or IL-17A had impaired activity. Thus, Th17 cells are not always short lived and are a less-differentiated subset capable of superior persistence and functionality.


Nature | 2015

Super-enhancers delineate disease-associated regulatory nodes in T cells

Golnaz Vahedi; Yuka Kanno; Yasuko Furumoto; Kan Jiang; Stephen C. J. Parker; Michael R. Erdos; Sean Davis; Rahul Roychoudhuri; Nicholas P. Restifo; Massimo Gadina; Zhonghui Tang; Yijun Ruan; Francis S. Collins; Vittorio Sartorelli; John J. O’Shea

Enhancers regulate spatiotemporal gene expression and impart cell-specific transcriptional outputs that drive cell identity. Super-enhancers (SEs), also known as stretch-enhancers, are a subset of enhancers especially important for genes associated with cell identity and genetic risk of disease. CD4+ T cells are critical for host defence and autoimmunity. Here we analysed maps of mouse T-cell SEs as a non-biased means of identifying key regulatory nodes involved in cell specification. We found that cytokines and cytokine receptors were the dominant class of genes exhibiting SE architecture in T cells. Nonetheless, the locus encoding Bach2, a key negative regulator of effector differentiation, emerged as the most prominent T-cell SE, revealing a network in which SE-associated genes critical for T-cell biology are repressed by BACH2. Disease-associated single-nucleotide polymorphisms for immune-mediated disorders, including rheumatoid arthritis, were highly enriched for T-cell SEs versus typical enhancers or SEs in other cell lineages. Intriguingly, treatment of T cells with the Janus kinase (JAK) inhibitor tofacitinib disproportionately altered the expression of rheumatoid arthritis risk genes with SE structures. Together, these results indicate that genes with SE architecture in T cells encompass a variety of cytokines and cytokine receptors but are controlled by a ‘guardian’ transcription factor, itself endowed with an SE. Thus, enumeration of SEs allows the unbiased determination of key regulatory nodes in T cells, which are preferentially modulated by pharmacological intervention.


Cancer Research | 2015

Akt Inhibition Enhances Expansion of Potent Tumor-Specific Lymphocytes with Memory Cell Characteristics

Joseph G. Crompton; Madhusudhanan Sukumar; Rahul Roychoudhuri; David Clever; Alena Gros; Robert L. Eil; Eric Tran; Ken Ichi Hanada; Zhiya Yu; Douglas C. Palmer; Sid P. Kerkar; Ryan D. Michalek; Trevor Upham; Anthony J. Leonardi; Nicolas Acquavella; Ena Wang; Francesco M. Marincola; Luca Gattinoni; Pawel Muranski; Mark S. Sundrud; Christopher A. Klebanoff; Steven A. Rosenberg; Nicholas P. Restifo

Adoptive cell therapy (ACT) using autologous tumor-infiltrating lymphocytes (TIL) results in complete regression of advanced cancer in some patients, but the efficacy of this potentially curative therapy may be limited by poor persistence of TIL after adoptive transfer. Pharmacologic inhibition of the serine/threonine kinase Akt has recently been shown to promote immunologic memory in virus-specific murine models, but whether this approach enhances features of memory (e.g., long-term persistence) in TIL that are characteristically exhausted and senescent is not established. Here, we show that pharmacologic inhibition of Akt enables expansion of TIL with the transcriptional, metabolic, and functional properties characteristic of memory T cells. Consequently, Akt inhibition results in enhanced persistence of TIL after adoptive transfer into an immunodeficient animal model and augments antitumor immunity of CD8 T cells in a mouse model of cell-based immunotherapy. Pharmacologic inhibition of Akt represents a novel immunometabolomic approach to enhance the persistence of antitumor T cells and improve the efficacy of cell-based immunotherapy for metastatic cancer.


Nature | 2016

Ionic immune suppression within the tumour microenvironment limits T cell effector function.

Robert L. Eil; Suman K. Vodnala; David Clever; Christopher A. Klebanoff; Madhusudhanan Sukumar; Jenny H. Pan; Douglas C. Palmer; Alena Gros; Tori N. Yamamoto; Shashank J. Patel; Geoffrey Guittard; Zhiya Yu; Valentina Carbonaro; Klaus Okkenhaug; David S. Schrump; W. Marston Linehan; Rahul Roychoudhuri; Nicholas P. Restifo

Tumours progress despite being infiltrated by tumour-specific effector T cells. Tumours contain areas of cellular necrosis, which are associated with poor survival in a variety of cancers. Here, we show that necrosis releases intracellular potassium ions into the extracellular fluid of mouse and human tumours, causing profound suppression of T cell effector function. Elevation of the extracellular potassium concentration ([K+]e) impairs T cell receptor (TCR)-driven Akt–mTOR phosphorylation and effector programmes. Potassium-mediated suppression of Akt–mTOR signalling and T cell function is dependent upon the activity of the serine/threonine phosphatase PP2A. Although the suppressive effect mediated by elevated [K+]e is independent of changes in plasma membrane potential (Vm), it requires an increase in intracellular potassium ([K+]i). Accordingly, augmenting potassium efflux in tumour-specific T cells by overexpressing the potassium channel Kv1.3 lowers [K+]i and improves effector functions in vitro and in vivo and enhances tumour clearance and survival in melanoma-bearing mice. These results uncover an ionic checkpoint that blocks T cell function in tumours and identify potential new strategies for cancer immunotherapy.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Single-cell gene-expression profiling reveals qualitatively distinct CD8 T cells elicited by different gene-based vaccines

Lukas Flatz; Rahul Roychoudhuri; Mitsuo Honda; Abdelali Filali-Mouhim; Jean-Philippe Goulet; Nadia Kettaf; Min Lin; Mario Roederer; Elias K. Haddad; Rafick Pierre Sekaly; Gary J. Nabel

CD8 T cells play a key role in mediating protective immunity against selected pathogens after vaccination. Understanding the mechanism of this protection is dependent upon definition of the heterogeneity and complexity of cellular immune responses generated by different vaccines. Here, we identify previously unrecognized subsets of CD8 T cells based upon analysis of gene-expression patterns within single cells and show that they are differentially induced by different vaccines. Three prime-boost vector combinations encoding HIV Env stimulated antigen-specific CD8 T-cell populations of similar magnitude, phenotype, and functionality. Remarkably, however, analysis of single-cell gene-expression profiles enabled discrimination of a majority of central memory (CM) and effector memory (EM) CD8 T cells elicited by the three vaccines. Subsets of T cells could be defined based on their expression of Eomes, Cxcr3, and Ccr7, or Klrk1, Klrg1, and Ccr5 in CM and EM cells, respectively. Of CM cells elicited by DNA prime-recombinant adenoviral (rAd) boost vectors, 67% were Eomes− Ccr7+ Cxcr3−, in contrast to only 7% and 2% stimulated by rAd5-rAd5 or rAd-LCMV, respectively. Of EM cells elicited by DNA-rAd, 74% were Klrk1− Klrg1−Ccr5− compared with only 26% and 20% for rAd5-rAd5 or rAd5-LCMV. Definition by single-cell gene profiling of specific CM and EM CD8 T-cell subsets that are differentially induced by different gene-based vaccines will facilitate the design and evaluation of vaccines, as well as enable our understanding of mechanisms of protective immunity.


Journal of Experimental Medicine | 2013

Retinoic acid controls the homeostasis of pre-cDC–derived splenic and intestinal dendritic cells

Christopher A. Klebanoff; Sean P. Spencer; Parizad Torabi-Parizi; John Grainger; Rahul Roychoudhuri; Yun Ji; Madhusudhanan Sukumar; Pawel Muranski; Christopher D. Scott; Jason A. Hall; Gabriela A. Ferreyra; Anthony J. Leonardi; Zachary A. Borman; Jinshan Wang; Douglas C. Palmer; Christoph Wilhelm; Rongman Cai; Junfeng Sun; Joseph L. Napoli; Robert L. Danner; Luca Gattinoni; Yasmine Belkaid; Nicholas P. Restifo

Retinoic acid is required to maintain pre-DC–derived CD11b+CD8α−Esamhigh dendritic cells (DCs) in the spleen and CD11b+CD103+ DCs in the gut.


Cell Metabolism | 2016

Mitochondrial Membrane Potential Identifies Cells with Enhanced Stemness for Cellular Therapy.

Madhusudhanan Sukumar; Jie Liu; Gautam U. Mehta; Shashank J. Patel; Rahul Roychoudhuri; Joseph G. Crompton; Christopher A. Klebanoff; Yun Ji; Peng Li; Zhiya Yu; Greg Whitehill; David Clever; Robert L. Eil; Douglas C. Palmer; Suman Mitra; Mahadev Rao; Keyvan Keyvanfar; David S. Schrump; Ena Wang; Francesco M. Marincola; Luca Gattinoni; Warren J. Leonard; Pawel Muranski; Toren Finkel; Nicholas P. Restifo

Long-term survival and antitumor immunity of adoptively transferred CD8(+) T cells is dependent on their metabolic fitness, but approaches to isolate therapeutic T cells based on metabolic features are not well established. Here we utilized a lipophilic cationic dye tetramethylrhodamine methyl ester (TMRM) to identify and isolate metabolically robust T cells based on their mitochondrial membrane potential (ΔΨm). Comprehensive metabolomic and gene expression profiling demonstrated global features of improved metabolic fitness in low-ΔΨm-sorted CD8(+) T cells. Transfer of these low-ΔΨm T cells was associated with superior long-term in vivo persistence and an enhanced capacity to eradicate established tumors compared with high-ΔΨm cells. Use of ΔΨm-based sorting to enrich for cells with superior metabolic features was observed in CD8(+), CD4(+) T cell subsets, and long-term hematopoietic stem cells. This metabolism-based approach to cell selection may be broadly applicable to therapies involving the transfer of HSC or lymphocytes for the treatment of viral-associated illnesses and cancer.


Journal of Clinical Investigation | 2016

Memory T cell–driven differentiation of naive cells impairs adoptive immunotherapy

Christopher A. Klebanoff; Christopher D. Scott; Anthony J. Leonardi; Tori N. Yamamoto; Anthony C. Cruz; Claudia Ouyang; Madhu Ramaswamy; Rahul Roychoudhuri; Yun Ji; Robert L. Eil; Madhusudhanan Sukumar; Joseph G. Crompton; Douglas C. Palmer; Zachary A. Borman; David Clever; Stacy K. Thomas; Shashankkumar Patel; Zhiya Yu; Pawel Muranski; Hui Liu; Ena Wang; Francesco M. Marincola; Alena Gros; Luca Gattinoni; Steven A. Rosenberg; Richard M. Siegel; Nicholas P. Restifo

Adoptive cell transfer (ACT) of purified naive, stem cell memory, and central memory T cell subsets results in superior persistence and antitumor immunity compared with ACT of populations containing more-differentiated effector memory and effector T cells. Despite a clear advantage of the less-differentiated populations, the majority of ACT trials utilize unfractionated T cell subsets. Here, we have challenged the notion that the mere presence of less-differentiated T cells in starting populations used to generate therapeutic T cells is sufficient to convey their desirable attributes. Using both mouse and human cells, we identified a T cell-T cell interaction whereby antigen-experienced subsets directly promote the phenotypic, functional, and metabolic differentiation of naive T cells. This process led to the loss of less-differentiated T cell subsets and resulted in impaired cellular persistence and tumor regression in mouse models following ACT. The T memory-induced conversion of naive T cells was mediated by a nonapoptotic Fas signal, resulting in Akt-driven cellular differentiation. Thus, induction of Fas signaling enhanced T cell differentiation and impaired antitumor immunity, while Fas signaling blockade preserved the antitumor efficacy of naive cells within mixed populations. These findings reveal that T cell subsets can synchronize their differentiation state in a process similar to quorum sensing in unicellular organisms and suggest that disruption of this quorum-like behavior among T cells has potential to enhance T cell-based immunotherapies.


Current Opinion in Immunology | 2015

The interplay of effector and regulatory T cells in cancer

Rahul Roychoudhuri; Robert L. Eil; Nicholas P. Restifo

Regulatory T (Treg) cells suppress effector T (Teff) cells and prevent immune-mediated rejection of cancer. Much less appreciated are mechanisms by which Teff cells antagonize Treg cells. Herein, we consider how complex reciprocal interactions between Teff and Treg cells shape their population dynamics within tumors. Under states of tolerance, including during tumor escape, suppressed Teff cells support Treg cell populations through antigen-dependent provision of interleukin (IL)-2. During immune activation, Teff cells can lose this supportive capacity and directly antagonize Treg cell populations to neutralize their immunosuppressive function. While this latter state is rarely achieved spontaneously within tumors, we propose that therapeutic induction of immune activation has the potential to stably disrupt immunosuppressive population states resulting in durable cancer regression.

Collaboration


Dive into the Rahul Roychoudhuri's collaboration.

Top Co-Authors

Avatar

Nicholas P. Restifo

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Luca Gattinoni

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Douglas C. Palmer

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Madhusudhanan Sukumar

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Zhiya Yu

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Robert L. Eil

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Yun Ji

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Shashank J. Patel

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge