Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Raili Ruonala is active.

Publication


Featured researches published by Raili Ruonala.


The Plant Cell | 2011

Chilling of Dormant Buds Hyperinduces FLOWERING LOCUS T and Recruits GA-Inducible 1,3-β-Glucanases to Reopen Signal Conduits and Release Dormancy in Populus

Päivi L.H. Rinne; Annikki Welling; Jorma Vahala; Linda Ripel; Raili Ruonala; Jaakko Kangasjärvi; Christiaan van der Schoot

This work identifies 10 putative Populus orthologs of Arabidopsis genes that encode structurally different 1,3-β-glucanases and shows that they localize at and around plasmodesmata. These enzymes are differently regulated by daylength, temperature, GA3, and GA4, providing a mechanistic explanation of how cell communication is modulated during the dormancy cycling in synchrony with the seasons. In trees, production of intercellular signals and accessibility of signal conduits jointly govern dormancy cycling at the shoot apex. We identified 10 putative cell wall 1,3-β-glucanase genes (glucan hydrolase family 17 [GH17]) in Populus that could turn over 1,3-β-glucan (callose) at pores and plasmodesmata (PD) and investigated their regulation in relation to FT and CENL1 expression. The 10 genes encode orthologs of Arabidopsis thaliana BG_ppap, a PD-associated glycosylphosphatidylinositol (GPI) lipid-anchored protein, the Arabidopsis PD callose binding protein PDCB, and a birch (Betula pendula) putative lipid body (LB) protein. We found that these genes were differentially regulated by photoperiod, by chilling (5°C), and by feeding of gibberellins GA3 and GA4. GA3 feeding upregulated all LB-associated GH17s, whereas GA4 upregulated most GH17s with a GPI anchor and/or callose binding motif, but only GA4 induced true bud burst. Chilling upregulated a number of GA biosynthesis and signaling genes as well as FT, but not CENL1, while the reverse was true for both GA3 and GA4. Collectively, the results suggest a model for dormancy release in which chilling induces FT and both GPI lipid-anchored and GA3-inducible GH17s to reopen signaling conduits in the embryonic shoot. When temperatures rise, the reopened conduits enable movement of FT and CENL1 to their targets, where they drive bud burst, shoot elongation, and morphogenesis.


Development | 2013

Crossing paths: cytokinin signalling and crosstalk.

Sedeer El-Showk; Raili Ruonala; Ykä Helariutta

Cytokinins are a major class of plant hormones that are involved in various aspects of plant development, ranging from organ formation and apical dominance to leaf senescence. Cytokinin and auxin have long been known to interact antagonistically, and more recent studies have shown that cytokinins also interact with other plant hormones to regulate plant development. A growing body of research has begun to elucidate the molecular and genetic underpinnings of this extensive crosstalk. The rich interconnections between the synthesis, perception and transport networks of these plant hormones provide a wide range of opportunities for them to modulate, amplify or buffer one another. Here, we review this exciting and rapidly growing area of cytokinin research.


Plant Physiology | 2003

Ethylene Insensitivity Modulates Ozone-Induced Cell Death in Birch

Jorma Vahala; Raili Ruonala; Markku Keinänen; Hannele Tuominen; Jaakko Kangasjärvi

We have used genotypic variation in birch (Betula pendula Roth) to investigate the roles of ozone (O3)-induced ethylene (ET), jasmonic acid, and salicylic acid in the regulation of tissue tolerance to O3. Of these hormones, ET evolution correlated best with O3-induced cell death. Disruption of ET perception by transformation of birch with the dominant negative mutant allele etr1-1 of the Arabidopsis ET receptor gene ETR1 or blocking of ET perception with 1-methylcyclopropene reduced but did not completely prevent the O3-induced cell death, when inhibition of ET biosynthesis with aminooxyacetic acid completely abolished O3 lesion formation. This suggests the presence of an ET-signaling-independent but ET biosynthesis-dependent component in the ET-mediated stimulation of cell death in O3-exposed birch. Functional ET signaling was required for the O3 induction of the gene encoding β-cyanoalanine synthase, which catalyzes detoxification of the cyanide formed during ET biosynthesis. The results suggest that functional ET signaling is required to protect birch from the O3-induced cell death and that a decrease in ET sensitivity together with a simultaneous, high ET biosynthesis can potentially cause cell death through a deficient detoxification of cyanide.


The Plant Cell | 2008

CENL1 Expression in the Rib Meristem Affects Stem Elongation and the Transition to Dormancy in Populus

Raili Ruonala; Päivi L.H. Rinne; Jaakko Kangasjärvi; Christiaan van der Schoot

We investigated the short day (SD)–induced transition to dormancy in wild-type hybrid poplar (Populus tremula × P. tremuloides) and its absence in transgenic poplar overexpressing heterologous PHYTOCHROME A (PHYA). CENTRORADIALIS-LIKE1 (CENL1), a poplar ortholog of Arabidopsis thaliana TERMINAL FLOWER1 (TFL1), was markedly downregulated in the wild-type apex coincident with SD-induced growth cessation. By contrast, poplar overexpressing a heterologous Avena sativa PHYA construct (P35S:AsPHYA), with PHYA accumulating in the rib meristem (RM) and adjacent tissues but not in the shoot apical meristem (SAM), upregulated CENL1 in the RM area coincident with an acceleration of stem elongation. In SD-exposed heterografts, both P35S:AsPHYA and wild-type scions ceased growth and formed buds, whereas only the wild type assumed dormancy and P35S:AsPHYA showed repetitive flushing. This shows that the transition is not dictated by leaf-produced signals but dependent on RM and SAM properties. In view of this, callose-enforced cell isolation in the SAM, associated with suspension of indeterminate growth during dormancy, may require downregulation of CENL1 in the RM. Accordingly, upregulation of CENL1/TFL1 might promote stem elongation in poplar as well as in Arabidopsis during bolting. Together, the results suggest that the RM is particularly sensitive to photoperiodic signals and that CENL1 in the RM influences transition to dormancy in hybrid poplar.


Evodevo | 2013

The unique pseudanthium of Actinodium

Regine Claßen-Bockhoff; Raili Ruonala; Kester Bull-Hereñu; Neville Marchant; Victor A. Albert

BackgroundGenes encoding TCP transcription factors, such as CYCLOIDEA-like (CYC-like) genes, are well known actors in the control of plant morphological development, particularly regarding the control of floral symmetry. Despite recent understanding that these genes play a role in establishing the architecture of inflorescences in the sunflower family (Asteraceae), where hundreds of finely organized flowers are arranged to mimic an individual flower, little is known about their function in the development of flower-like inflorescences across diverse phylogenetic groups. Here, we studied the head-like pseudanthium of the Australian swamp daisy Actinodium cunninghamii Schau. (Myrtaceae, the myrtle family), which consists of a cluster of fertile flowers surrounded by showy ray-shaped structures, to fully characterize its inflorescence development and to test whether CYC-like genes may participate in the control of its daisy-like flowering structures.ResultsWe used standard morphological and anatomical methods to analyze Actinodium inflorescence development. Furthermore, we isolated Actinodium CYC-like genes using degenerate PCR primers, and studied the expression patterns of these genes using quantitative RT-PCR. We found that the ray-shaped elements of Actinodium are not single flowers but instead branched short-shoots occasionally bearing flowers. We found differential expression of CYC-like genes across the pseudanthium of Actinodium, correlating with the showiness and branching pattern of the ray structures.ConclusionsThe Actinodium inflorescence represents a novel type of pseudanthium with proximal branches mimicking ray flowers. Expression patterns of CYC-like genes are suggestive of participation in the control of pseudanthium development, in a manner analogous to the distantly related Asteraceae. As such, flowering plants appear to have recruited CYC-like genes for heteromorphic inflorescence development at least twice during their evolutionary history.


Plant Journal | 2014

Functional diversification of duplicated CYC2 clade genes in regulation of inflorescence development in Gerbera hybrida (Asteraceae)

Inka Juntheikki-Palovaara; Sari Tähtiharju; Tianying Lan; Suvi K. Broholm; Anneke S. Rijpkema; Raili Ruonala; Liga Kale; Victor A. Albert; Teemu H. Teeri; Paula Elomaa

The complex inflorescences (capitula) of Asteraceae consist of different types of flowers. In Gerbera hybrida (gerbera), the peripheral ray flowers are bilaterally symmetrical and lack functional stamens while the central disc flowers are more radially symmetrical and hermaphroditic. Proteins of the CYC2 subclade of the CYC/TB1-like TCP domain transcription factors have been recruited several times independently for parallel evolution of bilaterally symmetrical flowers in various angiosperm plant lineages, and have also been shown to regulate flower-type identity in Asteraceae. The CYC2 subclade genes in gerbera show largely overlapping gene expression patterns. At the level of single flowers, their expression domain in petals shows a spatial shift from the dorsal pattern known so far in species with bilaterally symmetrical flowers, suggesting that this change in expression may have evolved after the origin of Asteraceae. Functional analysis indicates that GhCYC2, GhCYC3 and GhCYC4 mediate positional information at the proximal-distal axis of the inflorescence, leading to differentiation of ray flowers, but that they also regulate ray flower petal growth by affecting cell proliferation until the final size and shape of the petals is reached. Moreover, our data show functional diversification for the GhCYC5 gene. Ectopic activation of GhCYC5 increases flower density in the inflorescence, suggesting that GhCYC5 may promote the flower initiation rate during expansion of the capitulum. Our data thus indicate that modification of the ancestral network of TCP factors has, through gene duplications, led to the establishment of new expression domains and to functional diversification.


PLOS ONE | 2014

Isl1 and Pou4f2 Form a Complex to Regulate Target Genes in Developing Retinal Ganglion Cells

Renzhong Li; Fuguo Wu; Raili Ruonala; Darshan Sapkota; Zihua Hu; Xiuqian Mu

Precise regulation of gene expression during biological processes, including development, is often achieved by combinatorial action of multiple transcription factors. The mechanisms by which these factors collaborate are largely not known. We have shown previously that Isl1, a Lim-Homeodomain transcription factor, and Pou4f2, a class IV POU domain transcription factor, co-regulate a set of genes required for retinal ganglion cell (RGC) differentiation. Here we further explore how these two factors interact to precisely regulate gene expression during RGC development. By GST pulldown assays, co-immunoprecipitation, and electrophoretic mobility shift assays, we show that Isl1 and Pou4f2 form a complex in vitro and in vivo, and identify the domains within these two proteins that are responsible for this interaction. By luciferase assay, in situ hybridization, and RNA-seq, we further demonstrate that the two factors contribute quantitatively to gene expression in the developing RGCs. Although each factor alone can activate gene expression, both factors are required to achieve optimal expression levels. Finally, we discover that Isl1 and Pou4f2 can interact with other POU and Lim-Homeodomain factors respectively, indicating the interactions between these two classes of transcription factors are prevalent in development and other biological processes.


Journal of Experimental Botany | 2015

Long and short photoperiod buds in hybrid aspen share structural development and expression patterns of marker genes

Päivi L.H. Rinne; Laju K. Paul; Jorma Vahala; Raili Ruonala; Jaakko Kangasjärvi; Christiaan van der Schoot

Highlight Short photoperiod and apical dominance trigger a shared developmental bud programme at terminal and axillary positions, while the capacity to establish photoperiod-induced dormancy is lost in maturing para-dormant axillary buds.


Evodevo | 2012

The double-corolla phenotype in the Hawaiian lobelioid genus Clermontia involves ectopic expression of PISTILLATA B-function MADS box gene homologs

Katherine A Hofer; Raili Ruonala; Victor A. Albert

BackgroundThe Hawaiian endemic genus Clermonti a (Campanulaceae) includes 22 species, 15 of which, the double-corolla species, are characterized by an extra whorl of organs that appear to be true petals occupying what is normally the sepal whorl. Previous research has shown that the presence of homeotic petaloid organs in some other plant groups correlates with ectopic expression of B-function MADS box genes, but similar core eudicot examples of apparent groundplan divergence remain unstudied. B-function genes, which are not normally expressed in the sepal whorl, are required for determination and maintenance of petal identity. Here, we investigate the potential role of altered B-function gene expression contributing to the morphological diversity of this island genus.ResultsWe examined the morphology and developmental genetics of two different species of Clermontia, one of which, C. arborescens, has normal sepals while the other, C. parviflora, has two whorls of petal-like organs. Scanning electron microscopy of cell surface morphologies of first and second whorl organs in the double-corolla species C. parviflora revealed conical epidermal cells on the adaxial surfaces of both first and second whorl petaloid organs, strongly suggesting a homeotic conversion in the former. Phylogenetic analysis of Clermontia species based on 5S ribosomal DNA non-transcribed spacer sequences indicated a probable single and geologically recent origin of the double-corolla trait within the genus, with numerous potential reversals to the standard sepal-petal format. Quantitative polymerase chain reaction analysis of homologs of the B-function genes PISTILLATA (PI), APETALA3 and TOMATO MADS 6 indicated ectopic expression of two PI paralogs in the first whorl of C. parviflora; no such homeotic expression was observed for the other two genes, nor for several other MADS box genes involved in various floral and non-floral functions. In the standard sepal-petal species C. arborescens, ectopic expression of PI homologs was not observed. In C. parviflora, the upregulation of PI homologs was precisely restricted to the perianth and stamen whorls, excluding a simple overexpression phenotype. In situ hybridization analysis of C. parviflora material similarly showed first and second whorl PI homolog expression in developing flower buds.ConclusionsOur morphological and gene expression data strongly suggest that a drastic and heritable phenotypic change, at the level of floral groundplan, can originate from a homeotic mutation that is likely regulatory, being under precise spatiotemporal control as opposed to having pleiotropic characteristics. The uniqueness of this trait among core eudicots could be linked to increased ecological viability in an unstable island environment, a chance event which need not have posed any immediate adaptive benefit. We argue that the evolutionarily young morphological radiation of Clermontia may form a model system for general understanding of mechanisms of larger-scale angiosperm diversification in past, similarly unstable environments, in which small regulatory changes may have been responsible for modern-day groundplan differences.


Annual Review of Genetics | 2017

Genetic Networks in Plant Vascular Development

Raili Ruonala; Donghwi Ko; Ykä Helariutta

Understanding the development of vascular tissues in plants is crucial because the evolution of vasculature enabled plants to thrive on land. Various systems and approaches have been used to advance our knowledge about the genetic regulation of vasculature development, from the scale of single genes to networks. In this review, we provide a perspective on the major approaches used in studying plant vascular development, and we cover the mechanisms and genetic networks underlying vascular tissue specification, patterning, and differentiation.

Collaboration


Dive into the Raili Ruonala's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Päivi L.H. Rinne

Norwegian University of Life Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christiaan van der Schoot

Norwegian University of Life Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fuguo Wu

University at Buffalo

View shared research outputs
Researchain Logo
Decentralizing Knowledge