Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Raina N. Fichorova is active.

Publication


Featured researches published by Raina N. Fichorova.


The Journal of Infectious Diseases | 2001

The Molecular Basis of Nonoxynol-9-Induced Vaginal Inflammation and Its Possible Relevance to Human Immunodeficiency Virus Type 1 Transmission

Raina N. Fichorova; Lynne Tucker; Deborah J. Anderson

Topical microbicides are being sought to prevent sexually transmitted diseases by inactivating pathogens while preserving or enhancing the natural mucosal barrier. Serious public health concerns were raised by a recent phase 3 clinical trial that showed that nonoxynol-9 (N-9), a leading microbicide candidate widely used as an over-the-counter spermicide, may actually increase human immunodeficiency virus type 1 (HIV-1) transmission. The present study links N-9-induced vaginal inflammation to increased risk of HIV-1 infection. Analysis of molecular and cellular components in cervicovaginal secretions, as well as results from in vitro activation of cervicovaginal epithelial cells and U1/HIV promonocytic cells, showed that multiple N-9 use can promote HIV-1 transmission through interleukin-1-mediated NF-kappaB activation, which leads to chemokine-induced recruitment of HIV-1 host cells and increased HIV-1 replication in infected cells. Furthermore, this study identifies in vitro and in vivo model systems for monitoring undesirable proinflammatory effects of microbicides and other vaginal products.


Journal of Immunology | 2002

Response to Neisseria gonorrhoeae by cervicovaginal epithelial cells occurs in the absence of toll-like receptor 4-mediated signaling.

Raina N. Fichorova; Amanda O. Cronin; Egil Lien; Deborah J. Anderson; Robin R. Ingalls

Toll-like receptors (TLRs) have recently been identified as fundamental components of the innate immune response to bacterial pathogens. We investigated the role of TLR signaling in immune defense of the mucosal epithelial cells of the lower female genital tract. This site provides first line defense against microbial pathogens while remaining tolerant to a complex biosystem of resident microbiota. Epithelial cells derived from normal human vagina, ectocervix, and endocervix expressed mRNA for TLR1, -2, -3, -5, and -6. However, they failed to express TLR4 as well as MD2, two essential components of the receptor complex for LPS in phagocytes and endothelial cells. Consistent with this, endocervical epithelial cells were unresponsive to protein-free preparations of lipooligosaccharide from Neisseria gonorrhoeae and LPS from Escherichia coli. However, they were capable of responding to whole Gram-negative bacteria and bacterial lysates, as demonstrated by NF-κB activation and proinflammatory cytokine production. The presence of soluble CD14, a high-affinity receptor for LPS and other bacterial ligands, enhanced the sensitivity of genital tract epithelial cells to both low and high concentrations of bacteria, suggesting that soluble CD14 can act as a coreceptor for non-TLR4 ligands. These data demonstrate that the response to N. gonorrhoeae and other Gram-negative bacteria at the mucosal surface of the female genital tract occurs in the absence of endotoxin recognition and TLR4-mediated signaling.


Biology of Reproduction | 2004

Interleukin (IL)-1, IL-6, and IL-8 Predict Mucosal Toxicity of Vaginal Microbicidal Contraceptives

Raina N. Fichorova; M. Bajpai; Neelima Chandra; J.G. Hsiu; M. Spangler; V. Ratnam; Gustavo F. Doncel

Abstract Inflammation of the female reproductive tract increases susceptibility to HIV-1 and other viral infections and, thus, it becomes a serious liability for vaginal products. Excessive release of proinflammatory cytokines may alter the mucosal balance between tissue destruction and repair and be linked to enhanced penetration and replication of viral pathogens upon chemical insult. The present study evaluates four surface-active microbicide candidates, nonoxynol-9 (N-9), benzalkonium chloride (BZK), sodium dodecyl sulfate, and sodium monolaurate for their activity against human sperm and HIV, and their capacity to induce an inflammatory response on human vaginal epithelial cells and by the rabbit vaginal mucosa. Spermicidal and virucidal evaluations ranked N-9 as the most potent compound but were unable to predict the impact of the compounds on vaginal cell viability. Interleukin (IL)-1 release in vitro reflected their cytotoxicity profiles more accurately. Furthermore, IL-1 concentrations in vaginal washings correlated with cumulative mucosal irritation scores after single and multiple applications (P < 0.01), showing BZK as the most damaging agent for the vaginal mucosa. BZK induced rapid cell death, IL-1 release, and IL-6 secretion. The other compounds required either more prolonged or repeated contact with the vaginal epithelium to induce a significant inflammatory reaction. Increased IL-8 levels after multiple applications in vivo identified compounds with the highest cumulative mucosal toxicity (P < 0.01). In conclusion, IL-1, IL-6, and IL-8 in the vaginal secretions are sensitive indicators of compound-induced mucosal toxicity. The described evaluation system is a valuable tool in identifying novel vaginal contraceptive microbicides, selecting out candidates that may enhance, rather than decrease, HIV transmission.


Infection and Immunity | 2001

Distinct Proinflammatory Host Responses to Neisseria gonorrhoeae Infection in Immortalized Human Cervical and Vaginal Epithelial Cells

Raina N. Fichorova; Pragnya Jasvantrai Desai; Frank C. Gibson; Caroline Attardo Genco

ABSTRACT In this study we utilized immortalized morphologically and functionally distinct epithelial cell lines from normal human endocervix, ectocervix, and vagina to characterize gonococcal epithelial interactions pertinent to the lower female genital tract. Piliated, but not nonpiliated, N. gonorrhoeae strain F62 variants actively invaded these epithelial cell lines, as demonstrated by an antibiotic protection assay and confocal microscopy. Invasion of these cells by green fluorescent protein-expressing gonococci was characterized by colocalization of gonococci with F actin, which were initially detected 30 min postinfection. In all three cell lines, upregulation of interleukin 8 (IL-8) and IL-6, intercellular adhesion molecule 1 (CD54), and the nonspecific cross-reacting antigen (CD66c) were detected 4 h after infection with piliated and nonpiliated gonococci. Furthermore, stimulation of all three cell lines with gonococcal whole-cell lysates resulted in a similar upregulation of IL-6 and IL-8, confirming that bacterial uptake is not essential for this response. Increased levels of IL-1 were first detected 8 h after infection with gonococci, suggesting that the earlier IL-8 and IL-6 responses were not mediated through the IL-1 signaling pathway. The IL-1 response was limited to cultures infected with piliated gonococci and was more vigorous in the endocervical epithelial cells. The ability of gonococci to stimulate distinct proinflammatory host responses in these morphologically and functionally different compartments of the lower female genital tract may contribute directly to the inflammatory signs and symptoms characteristic of disease caused by N. gonorrhoeae.


Analytical Chemistry | 2008

Biological and technical variables affecting immunoassay recovery of cytokines from human serum and simulated vaginal fluid: a multicenter study.

Raina N. Fichorova; Nicola Richardson-Harman; Massimo Alfano; Laurent Bélec; Cédric Carbonneil; Silvia Chen; Lisa A. Cosentino; Kelly A. Curtis; Charlene S. Dezzutti; Betty Donoval; Gustavo F. Doncel; Melissa Donaghay; Jean-Charles Grivel; Esmeralda Guzman; Madeleine Hayes; Betsy C. Herold; Sharon L. Hillier; Carol Lackman-Smith; Alan Landay; Leonid Margolis; Kenneth H. Mayer; Jenna Malia Pasicznyk; Melanie Pallansch-Cokonis; Guido Poli; Patricia Reichelderfer; Paula Roberts; Irma Rodriguez; Héla Saïdi; Rosaria Rita Sassi; Robin Shattock

The increase of proinflammatory cytokines in vaginal secretions may serve as a surrogate marker of unwanted inflammatory reaction to microbicide products topically applied for the prevention of sexually transmitted diseases, including HIV-1. Interleukin (IL)-1β and IL-6 have been proposed as indicators of inflammation and increased risk of HIV-1 transmission; however, the lack of information regarding detection platforms optimal for vaginal fluids and interlaboratory variation limit their use for microbicide evaluation and other clinical applications. This study examines fluid matrix variants relevant to vaginal sampling techniques and proposes a model for interlaboratory comparisons across current cytokine detection technologies. IL-1β and IL-6 standards were measured by 12 laboratories in four countries, using 14 immunoassays and four detection platforms based on absorbance, chemiluminescence, electrochemiluminescence, and fluorescence. International reference preparations of cytokines with defined biological activity were spiked into (1) a defined medium simulating the composition of human vaginal fluid at pH 4.5 and 7.2, (2) physiologic salt solutions (phosphate-buffered saline and saline) commonly used for vaginal lavage sampling in clinical studies of cytokines, and (3) human blood serum. Assays were assessed for reproducibility, linearity, accuracy, and significantly detectable fold difference in cytokine level. Factors with significant impact on cytokine recovery were determined by Kruskal−Wallis analysis of variance with Dunn’s multiple comparison test and multiple regression models. All assays showed acceptable intra-assay reproducibility; however, most were associated with significant interlaboratory variation. The smallest reliably detectable cytokine differences (P < 0.05) derived from pooled interlaboratory data varied from 1.5- to 26-fold depending on assay, cytokine, and matrix type. IL-6 but not IL-1β determinations were lower in both saline and phosphate-buffered saline as compared to vaginal fluid matrix, with no significant effect of pH. The (electro)chemiluminescence-based assays were most discriminative and consistently detected <2-fold differences within each matrix type. The Luminex-based assays were less discriminative with lower reproducibility between laboratories. These results suggest the need for uniform vaginal sampling techniques and a better understanding of immunoassay platform differences and cross-validation before the biological significance of cytokine variations can be validated in clinical trials. This investigation provides the first standardized analytic approach for assessing differences in mucosal cytokine levels and may improve strategies for monitoring immune responses at the vaginal mucosal interface.


Immunity | 2015

Cervicovaginal Bacteria Are a Major Modulator of Host Inflammatory Responses in the Female Genital Tract

Melis N. Anahtar; Elizabeth H. Byrne; Kathleen E. Doherty; Brittany Bowman; Hidemi S. Yamamoto; Magali Soumillon; Nikita Padavattan; Nasreen Ismail; Amber Moodley; Mary E. Sabatini; Musie Ghebremichael; Chad Nusbaum; Curtis Huttenhower; Herbert W. Virgin; Thumbi Ndung’u; Krista Dong; Bruce D. Walker; Raina N. Fichorova; Douglas S. Kwon

Colonization by Lactobacillus in the female genital tract is thought to be critical for maintaining genital health. However, little is known about how genital microbiota influence host immune function and modulate disease susceptibility. We studied a cohort of asymptomatic young South African women and found that the majority of participants had genital communities with low Lactobacillus abundance and high ecological diversity. High-diversity communities strongly correlated with genital pro-inflammatory cytokine concentrations in both cross-sectional and longitudinal analyses. Transcriptional profiling suggested that genital antigen-presenting cells sense gram-negative bacterial products in situ via Toll-like receptor 4 signaling, contributing to genital inflammation through activation of the NF-κB signaling pathway and recruitment of lymphocytes by chemokine production. Our study proposes a mechanism by which cervicovaginal microbiota impact genital inflammation and thereby might affect a womans reproductive health, including her risk of acquiring HIV.


Journal of Reproductive Immunology | 2009

Impact of T. vaginalis infection on innate immune responses and reproductive outcome

Raina N. Fichorova

Trichomonas vaginalis is the most common non-viral sexually transmitted pathogen. The infection is prevalent in reproductive age women and is associated with vaginitis, endometritis, adnexitis, pyosalpinx, infertility, preterm birth, low birth weight, bacterial vaginosis, and increased risk of cervical cancer, HPV, and HIV infection. In men, its complications include urethritis, prostatitis, epididymitis, and infertility through inflammatory damage or interference with the sperm function. The infection is often asymptomatic and recurrent despite the presence of specific antibodies, suggesting the importance of the innate immune defense. T. vaginalis adhesion proteins, cysteine proteases, and the major parasite lipophosphoglycan (LPG) play distinct roles in the pathogenesis and evasion of host immunity. LPG plays a key role in the parasite adherence and signaling to human vaginal and cervical epithelial cells, which is at least in part mediated by galectins. The epithelial cells respond to T. vaginalis infection and purified LPG by selective upregulation of proinflammatory mediators. At the same time, T. vaginalis triggers an immunosuppressive response in monocytes, macrophages, and dendritic cells. The molecular mechanisms underlying reproductive complications and epidemiologic risks associated with T. vaginalis infection remain to be elucidated.


Infection and Immunity | 2006

Trichomonas vaginalis Lipophosphoglycan Triggers a Selective Upregulation of Cytokines by Human Female Reproductive Tract Epithelial Cells

Raina N. Fichorova; Radiana T. Trifonova; Robert O. Gilbert; Catherine E. Costello; Gary R. Hayes; John J. Lucas; Bibhuti N. Singh

ABSTRACT Trichomonas vaginalis is one of the most common nonviral sexually transmitted human infections and, worldwide, has been linked to increased incidence of human immunodeficiency virus type 1 transmission, preterm delivery, low birth weight, cervical cancer, and vaginitis. The molecular pathways that are important in initiating host inflammatory and immune responses to T. vaginalis are poorly understood. Here we report interactions of human cervicovaginal epithelial cells with the most abundant cell surface glycoconjugate of the parasite, the T. vaginalis lipophosphoglycan (LPG). Purified LPG mediated the adhesion of parasites to human vaginal epithelial cells in a dose-dependent manner. Furthermore, T. vaginalis LPG (but not LPG from Tritrichomonas foetus, the causative agent of bovine trichomoniasis) induced a selective upregulation of chemotactic cytokines by human endocervical, ectocervical, and vaginal epithelial cells, which do not express Toll-like receptor 4/MD2. The T. vaginalis LPG triggered interleukin 8 (IL-8), which promotes the adhesion and transmigration of neutrophils across the endothelium, and macrophage inflammatory protein 3α, which is a chemoattractant for immune cells and is essential for dendritic cell maturation. These effects were dose dependent and sustained in the absence of cytotoxicity and IL-1β release and utilized, at least in part, a signaling pathway independent from the Toll-like/IL-1 receptor adaptor protein MyD88.


The Journal of Pediatrics | 2011

The Relationship between Early Concentrations of 25 Blood Proteins and Cerebral White Matter Injury in Preterm Newborns: The ELGAN Study

Alan Leviton; Karl Kuban; T. Michael O’Shea; Nigel Paneth; Raina N. Fichorova; Elizabeth N. Allred; Olaf Dammann

OBJECTIVE To evaluate whether concentrations of inflammation-related proteins are elevated in the blood of preterm newborns who develop cerebral white matter damage. STUDY DESIGN We measured 25 proteins in blood collected on days 1, 7, and 14 from 939 infants born before the 28th week of gestation. Brain ultrasound scans were read by at least two sonologists, who agreed on the presence or absence of lesions. A protein concentration was considered elevated if it was in the highest quartile for gestational age and the day on which the specimen was collected. RESULTS In time-oriented models, elevated concentrations of vascular endothelial growth factor receptor 1, serum amyloid A, and macrophage inflammatory protein 1β on day 1 and interleukin-8 on day 7 were associated with increased risk of ventriculomegaly. Elevated concentrations of macrophage inflammatory protein 1β on day 1 and intercellular adhesion molecule 1 on day 7 were associated with increased risk of an echolucent lesion. Infants with elevated concentrations of inflammation-related proteins on two separate days were at significantly increased risk for ventriculomegaly, but at only modestly increased risk for an echolucent lesion. CONCLUSIONS Concentrations of inflammation-related proteins in the circulation in the first days after preterm birth provide information about the risk of sonographic white matter damage. The inflammatory process might begin in utero.


Journal of Acquired Immune Deficiency Syndromes | 2004

Guiding the vaginal microbicide trials with biomarkers of inflammation.

Raina N. Fichorova

This article discusses cytokine patterns as potential biomarkers of vaginal inflammation, which are needed for the safety evaluation of topical microbicide products for the prevention of sexually transmitted HIV-1 infection. In order to be effective, the vaginal anti-HIV-1 microbicides should avoid proinflammatory responses that facilitate transepithelial viral penetration and replication. Pro-inflammatory and anti-inflammatory cytokines play bi-directional roles in HIV-1 pathogenesis, transmission, susceptibility and resistance. Previous research has shown that many of these key mediators of mucosal barrier function (e.g. IL-1, IL-1 receptor antagonist, IL-6, TNF-α, TNF-receptor II, transforming growth factor β, IL-10, IL-12, IL-8, macrophage inhibitory protein 1, etc.) can be detected in the vaginal secretions of healthy or infected individuals using non-invasive sampling techniques. As part of two microbicide trials, we measured IL-1α, IL-1β, IL-1 receptor antagonist, TNF-α and IL-8 in 291 cervicovaginal lavage samples obtained before product use and at the seventh and 14th day after product use. We showed that vaginal formulations, temperature and matrix-specific factors in the vaginal fluids may interfere with cytokine detection, and therefore specific protocols must be validated for various collection procedures and cytokine assays. Our results suggest that combined patterns of cytokine dynamics rather than individual measurements might distinguish proinflammatory product-related effects in microbicide safety trials. More research is needed to establish cytokine mucosal baselines and modulation by genetic factors, sexual intercourse, menstrual cycle, exercise, hormones, stress and infections before guidelines can be established for clinical trial enrollment criteria, the prediction of side/adverse events and ultimately microbicide benefit prognostication.

Collaboration


Dive into the Raina N. Fichorova's collaboration.

Top Co-Authors

Avatar

Alan Leviton

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hidemi S. Yamamoto

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

T. Michael O’Shea

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Gustavo F. Doncel

Eastern Virginia Medical School

View shared research outputs
Top Co-Authors

Avatar

Nigel Paneth

Michigan State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hassan Y. Dawood

Brigham and Women's Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge