Rainer Boehm
Bundesanstalt für Materialforschung und -prüfung
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rainer Boehm.
Journal of Applied Physics | 2013
Maxim Daschewski; Rainer Boehm; Jens Prager; Marc Kreutzbruck; Andrea Harrer
We present a generalized analytical model of thermo-acoustic sound generation based on the analysis of thermally induced energy density fluctuations and their propagation into the adjacent matter. The model provides exact analytical prediction of the sound pressure generated in fluids and solids; consequently, it can be applied to arbitrary thermal power sources such as thermophones, plasma firings, laser beams, and chemical reactions. Unlike existing approaches, our description also includes acoustic near-field effects and sound-field attenuation. Analytical results are compared with measurements of sound pressures generated by thermo-acoustic transducers in air for frequencies up to 1 MHz. The tested transducers consist of titanium and indium tin oxide coatings on quartz glass and polycarbonate substrates. The model reveals that thermo-acoustic efficiency increases linearly with the supplied thermal power and quadratically with thermal excitation frequency. Comparison of the efficiency of our thermo-aco...
REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE EVALUATION VOLUME 29 | 2010
Rainer Boehm; Daniel Brackrock; Jessica Kitze; Gerhard Brekow; Marc Kreutzbruck
The spatial resolution in ultrasonic testing as a wave phenomenon in nature is limited to a certain fraction of the wavelength, usually defined to be close to the Rayleigh criterion. In case of complicated reflector surfaces—such as stress corrosion cracking—this limitation prevents an exact visualization of the defect shape. There exist a few approaches to improve the spatial resolution, whose reconstruction quality all in common also depend on the achieved signal‐to‐noise ratio of the raw data. In this work we present a specific SAFT analysis, in which a high number of different angles of incidence produce a sufficiently high number of different reflections at the crack edges resulting in an improved SNR. In doing so, we reconstruct a coherent crack structure. First investigations were made at artificially simulated crack configurations with different contours and curvatures in flat and cylindrical test blocks. The measurements results—visualized by representative scans—show details of crack design and ...
40TH ANNUAL REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE EVALUATION: Incorporating the 10th International Conference on Barkhausen Noise and Micromagnetic Testing | 2014
Marc Kreutzbruck; Daniel Brackrock; Gerhard Brekow; H.-J. Montag; Rainer Boehm; B. Illerhaus
Lightweight components are increasingly used in different industrial sectors such as transportation, energy generation and automotive. This growing field includes different types of CFRP-structures, hybrid materials and glued components showing - compared to their pure metallic counterparts- a significant more complicated structure in terms of internal interfaces and anisotropy of material parameters. In this work we present the use of matrix phased array to increase the amount of obtained information to enhance the inspection quality. We used different types of carbon materials such as 6 mm thick uni- and bidirectional prepreg specimens containing impact damages. The latter were introduced with different energy levels ranging from 1.3 to 7.2 J. By scanning a 2.25 MHz matrix array with 6 × 10 elements above the prepreg surface and using different angels of incidence a complete 3D-image was generated which allows the detection of defects as small as 1mm in a depth of 4 mm. A comparison with conventional ap...
REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE EVALUATION: Proceedings of the#N#35th Annual Review of Progress in Quantitative Nondestructive Evaluation | 2009
Gerhard Brekow; Daniel Brackrock; Rainer Boehm; Marc Kreutzbruck
Quantitative NDE methods play a key role when it comes to inspect components, which requires high operational safety. UT‐SAFT is one of the well‐known reconstruction tools, which provides information about the defect size. In this work we studied the use of phased array technique in combination with the SAFT algorithm to inspect power plant components. As a first example we inspected a real‐sized mock‐up model representing a part of a reactor pressure vessel with a 180 mm‐thick ferritic base material followed by a 6 mm‐thick austenitic cladding layer. The phased array probe was coupled at the outer ferritic surface. We detected and sized fatigue cracks within the cladding with a depth ranging from 4 mm to 10 mm. Secondly, we investigated a mock‐up model resembling a nozzle including a thermo sleeve inlet and a maximum wall thickness of about 37 mm. Artificially inserted notches with a depth of 3 mm could be detected and sized, where the thermo sleeve is welded at the inside of the nozzle.
Archive | 2018
Rainer Boehm; Thomas Heckel
Matrix phased array probes become more and more prominent to be used in industrial applications. The main drawbacks, using probes incorporating a very large number of transducer elements, are the needs for an appropriate cabling and an ultrasonic device offering many parallel channels. Matrix arrays designed for extended functionality feature at least 64 or more elements. Typical arrangements are square matrices, e.g. 10 by 10 or 11 by 11 or rectangular matrices, e.g. 8 by 16 or 10 by 12 to fit a 128-channel phased array system. In some phased array systems, the number of simultaneous active elements is limited to a certain number, e.g. 32 or 64. Those setups do not allow to run the probe with all elements active which may cause a significant change in the directivity pattern of the resulting sound beam. When only a subset of elements is possible to use during a single acquisition, different strategies may be applied to collect enough data for rebuilding the missing information from the echo signal. Omission of certain elements may be one approach, overlay of subsequent shots with different active areas may be another one. This paper presents the influence of decreased number of active elements on the sound field and their distribution on the array. An example for 16 active elements out of 121 is given in Figure 1. The sound field divergence and its shape basically remain the same, while the sensitivity is reduced and the amplitudes of the speckle-like side lobes increase significantly. Solutions using subsets with different element activity patterns on matrix arrays and their advantages and disadvantages concerning the sound field are evaluated using semi-analytic simulation tools. Sound field criteria regarding the consequences for NDT test results and the system setup are discussed.
Multidimensional Systems and Signal Processing | 2014
Christian Höhne; Rainer Boehm; Jens Prager
The Synthetic Aperture Focusing Technique (SAFT) is an algorithm applied in non-destructive ultrasonic testing which provides an image of flaws within a specimen. The image is reconstructed from A-scans measured at different positions. Reliable evaluation of the images obtained by the SAFT-algorithm, however, depends on the representation of the reconstructed data, which is initially given in terms of positive and negative local values only. A suitable way of processing this data for evaluation is to calculate the envelope, which can be achieved by means of the analytic signal. The extension of this concept to the multidimensional case is neither trivial nor unique and although extensive work on this subject has been carried out in the past, a correct envelope calculation in multidimensional data remains difficult since it depends on an additional condition, namely the separability of the signal. In this paper, the concept of analytic signals with single-quadrant spectra is applied to process 2-dimensional data obtained by the SAFT-algorithm. Furthermore, we present a procedure to overcome the limitations of that approach by selecting local magnitude values from a number of rotated frames after evaluating the signal’s separability in each frame, which is briefly validated against synthetic and experimental data.
Materials Testing-Materials and Components Technology and Application | 2013
Gottfried Schenk; Daniel Brackrock; Rainer Boehm; Herbert Willems
Abstract Die Gefährdung durch Pipelines ist in der Öffentlichkeit wegen zahlreicher Berichte über Unfälle weitgehend präsent. Warum? Weil jeder Unfall die Gefahr von massiven Umweltschäden mit sich bringt und bei Leitungen, die durch besiedeltes Gebiet führen, sogar mit menschlichen Opfern verbunden sein kann. Thema dieses Beitrags ist ein neuartiges Ultraschall-Verfahren, das eine schnellere, sichere und kostengünstigere Prüfung derartiger Rohrleitungssysteme erlaubt.
Materials Testing-Materials and Components Technology and Application | 2009
Marc Kreutzbruck; Hans-Martin Thomas; Roland Sickert; Ralf Casperson; Rainer Boehm; Kai Allweins; Gertrud Lemke
Abstract The determination of magnetic distortion fields caused by inclusions hidden in a conductive matrix using homogeneous current flow needs to be addressed in multiple tasks of electromagnetic non-destructive testing and materials science. This includes a series of testing problems such as the detection of tantalum inclusions hidden in niobium plates, metal inclusion in a nonmetallic base material or porosity in aluminum laser welds. Unfortunately, easy tools for an estimation of the defect response fields above the sample using pertinent detection concepts are still missing. In this study the Finite Element Method (FEM) was used for modeling spherically shaped defects, and an analytical expression was developed for the strength of the response field including the conductivity of the defect and matrix, the sensor-to-inclusion separation, and the defect size. Finally, the results were adapted to Eddy Current Testing problems, in which the skin effect was taken into consideration for an appropriate estimation of the signal strength.
Materials Testing-Materials and Components Technology and Application | 2004
Rainer Boehm; Anton Erhard; Thomas Rehfeldt
Kurzfassung Angeregt durch experimentelle Arbeiten zur hochauflösenden Ultraschallprüfung mit fokussierenden Prüfköpfen wird mit Hilfe von Modellrechnungen der Einfluss verschiedener Schallfeld- und Reflektorparameter auf die Echohöhe untersucht. Von besonderem Interesse ist dabei das Verhalten typischer Testreflektoren wie der Kreisscheibenreflektor und die Querbohrung in „verformten“ Schallfeldern, die durch Bauteilkrümmungen und Fokussierung entstehen können. Für solche Fälle lassen sich Abstandskurven (DAC) für verschiedene Reflektortypen rechnerisch erstellen und der experimentelle Aufwand erheblich reduzieren. Ein deutlicher Fortschritt wurde durch die Weiterentwicklung des Schallfeldmodells erreicht, das insbesondere für die Entwicklung neuer Typen von Gruppenstrahlerprüfköpfen unverzichtbar ist. Die Gültigkeit des Modells wird durch bisherige Messergebnisse bestätigt.
Archive | 2008
Rainer Boehm; Matthias Goldammer; Werner Heinrich