Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rainer Borriss is active.

Publication


Featured researches published by Rainer Borriss.


Nature Biotechnology | 2007

Comparative analysis of the complete genome sequence of the plant growth-promoting bacterium Bacillus amyloliquefaciens FZB42.

Xiao Hua Chen; Alexandra Koumoutsi; Romy Scholz; Andreas Eisenreich; Kathrin Schneider; Isabelle Heinemeyer; Burkhard Morgenstern; Björn Voss; Wolfgang R. Hess; Oleg N. Reva; Helmut Junge; Birgit Voigt; Peter R. Jungblut; Joachim Vater; Roderich D. Süssmuth; Heiko Liesegang; Axel Strittmatter; Gerhard Gottschalk; Rainer Borriss

Bacillus amyloliquefaciens FZB42 is a Gram-positive, plant-associated bacterium, which stimulates plant growth and produces secondary metabolites that suppress soil-borne plant pathogens. Its 3,918-kb genome, containing an estimated 3,693 protein-coding sequences, lacks extended phage insertions, which occur ubiquitously in the closely related Bacillus subtilis 168 genome. The B. amyloliquefaciens FZB42 genome reveals an unexpected potential to produce secondary metabolites, including the polyketides bacillaene and difficidin. More than 8.5% of the genome is devoted to synthesizing antibiotics and siderophores by pathways not involving ribosomes. Besides five gene clusters, known from B. subtilis to mediate nonribosomal synthesis of secondary metabolites, we identified four giant gene clusters absent in B. subtilis 168. The pks2 gene cluster encodes the components to synthesize the macrolactin core skeleton.


Journal of Bacteriology | 2004

Structural and Functional Characterization of Gene Clusters Directing Nonribosomal Synthesis of Bioactive Cyclic Lipopeptides in Bacillus amyloliquefaciens Strain FZB42

Alexandra Koumoutsi; Xiao-Hua Chen; Anke Henne; Heiko Liesegang; Gabriele Hitzeroth; Peter Franke; Joachim Vater; Rainer Borriss

The environmental strain Bacillus amyloliquefaciens FZB42 promotes plant growth and suppresses plant pathogenic organisms present in the rhizosphere. We sampled sequenced the genome of FZB42 and identified 2,947 genes with >50% identity on the amino acid level to the corresponding genes of Bacillus subtilis 168. Six large gene clusters encoding nonribosomal peptide synthetases (NRPS) and polyketide synthases (PKS) occupied 7.5% of the whole genome. Two of the PKS and one of the NRPS encoding gene clusters were unique insertions in the FZB42 genome and are not present in B. subtilis 168. Matrix-assisted laser desorption ionization-time of flight mass spectrometry analysis revealed expression of the antibiotic lipopeptide products surfactin, fengycin, and bacillomycin D. The fengycin (fen) and the surfactin (srf) operons were organized and located as in B. subtilis 168. A large 37.2-kb antibiotic DNA island containing the bmy gene cluster was attributed to the biosynthesis of bacillomycin D. The bmy island was found inserted close to the fen operon. The responsibility of the bmy, fen, and srf gene clusters for the production of the corresponding secondary metabolites was demonstrated by cassette mutagenesis, which led to the loss of the ability to produce these peptides. Although these single mutants still largely retained their ability to control fungal spread, a double mutant lacking both bacillomycin D and fengycin was heavily impaired in its ability to inhibit growth of phytopathogenic fungi, suggesting that both lipopeptides act in a synergistic manner.


Microbiology | 2002

Extracellular phytase activity of Bacillus amyloliquefaciens FZB45 contributes to its plant-growth-promoting effect.

Elsorra E. Idriss; Oliwia Makarewicz; Abdelazim Farouk; Kristin Rosner; Ralf Greiner; Helmut Bochow; Thomas Richter; Rainer Borriss

Several Bacillus strains belonging to the B. subtilis/amyloliquefaciens group isolated from plant-pathogen-infested soil possess plant-growth-promoting activity [Krebs, B. et al. (1998) J Plant Dis Prot 105, 181-197]. Three out of the four strains investigated were identified as B. amyloliquefaciens and were able to degrade extracellular phytate (myo-inositol hexakisphosphate). The highest extracellular phytase activity was detected in strain FZB45, and diluted culture filtrates of this strain stimulated growth of maize seedlings under phosphate limitation in the presence of phytate. The amino acid sequence deduced from the phytase phyA gene cloned from FZB45 displayed a high degree of similarity to known Bacillus phytases. Weak similarity between FZB45 phytase and B. subtilis alkaline phosphatase IV pointed to a possible common origin of these two enzymes. The recombinant protein expressed by B. subtilis MU331 displayed 3(1)-phytase activity yielding D/L-Ins(1,2,4,5,6)P5 as the first product of phytate hydrolysis. A phytase-negative mutant strain, FZB45/M2, whose phyA gene is disrupted, was generated by replacing the entire wild-type gene on the chromosome of FZB45 with a km::phyA fragment, and culture filtrates obtained from FZB45/M2 did not stimulate plant growth. In addition, the growth of maize seedlings was promoted in the presence of purified phytase and the absence of culture filtrate. These genetic and biochemical experiments provide strong evidence that phytase activity of B. amyloliquefaciens FZB45 is important for plant growth stimulation under phosphate limitation.


Molecular Plant-microbe Interactions | 2007

Tryptophan-Dependent Production of Indole-3-Acetic Acid (IAA) Affects Level of Plant Growth Promotion by Bacillus amyloliquefaciens FZB42

ElSorra E. Idris; Domingo J. Iglesias; Manuel Talon; Rainer Borriss

Phytohormone-like acting compounds previously have been suggested to be involved in the phytostimulatory action exerted by the plant-beneficial rhizobacterium Bacillus amyloliquefaciens FZB42. Analyses by high-performance liquid chromatography and gas chromatography-mass spectrometry performed with culture filtrates of FZB42 demonstrated the presence of indole-3-acetic acid (IAA), corroborating it as one of the pivotal plant-growth-promoting substances produced by this bacterium. In the presence of 5 mM tryptophan, a fivefold increase in IAA secretion was registered. In addition, in the trp auxotrophic strains E101 (deltatrpBA) and E102 (deltatrpED), and in two other strains bearing knockout mutations in genes probably involved in IAA metabolism, E103 (deltaysnE, putative IAA transacetylase) and E105 (deltayhcX, putative nitrilase), the concentration of IAA in the culture filtrates was diminished. Three of these mutant strains were less efficient in promoting plant growth, indicating that the Trp-dependent synthesis of auxins and plant growth promotion are functionally related in B. amyloliquefaciens.


Journal of Biotechnology | 2009

Genome analysis of Bacillus amyloliquefaciens FZB42 reveals its potential for biocontrol of plant pathogens

Xiao Hua Chen; Alexandra Koumoutsi; Romy Scholz; Kathrin Schneider; Joachim Vater; Roderich D. Süssmuth; Jörn Piel; Rainer Borriss

The genome of plant-associated Bacillus amyloliquefaciens FZB42 harbors an array of giant gene clusters involved in synthesis of lipopeptides and polyketides with antifungal, antibacterial and nematocidal activity. Five gene clusters, srf, bmy, fen, nrs, dhb, covering altogether 137 kb, were shown to direct synthesis of the cyclic lipopeptides surfactin, bacillomycin, fengycin, an unknown peptide, and the iron-siderophore bacillibactin. In addition, one gene cluster encoding enzymes involved in synthesis and export of the antibacterial dipeptide bacilysin is also functional in FZB42. Three gene clusters, mln, bae, and dfn, with a total size of 199 kb were shown to direct synthesis of the antibacterial acting polyketides macrolactin, bacillaene, and difficidin. In total, FZB42 dedicates about 340 kb, corresponding to 8.5% of its total genetic capacity, to synthesis of secondary metabolites. On the contrary, genes involved in ribosome-dependent synthesis of lantibiotics and other peptides are scarce. Apart from two incomplete gene clusters directing immunity against mersacidin and subtilin, only one peptide-like compound has been detected in the culture fluid that inhibits the growth of B. subtilis lacking the alternative sigma factor W.


Journal of Bacteriology | 2006

Structural and Functional Characterization of Three Polyketide Synthase Gene Clusters in Bacillus amyloliquefaciens FZB 42

Xiao-Hua Chen; Joachim Vater; Jörn Piel; Peter Franke; Romy Scholz; Kathrin Schneider; Alexandra Koumoutsi; Gabriele Hitzeroth; Nicolas Grammel; Axel Strittmatter; Gerhard Gottschalk; Roderich D. Süssmuth; Rainer Borriss

Although bacterial polyketides are of considerable biomedical interest, the molecular biology of polyketide biosynthesis in Bacillus spp., one of the richest bacterial sources of bioactive natural products, remains largely unexplored. Here we assign for the first time complete polyketide synthase (PKS) gene clusters to Bacillus antibiotics. Three giant modular PKS systems of the trans-acyltransferase type were identified in Bacillus amyloliquefaciens FZB 42. One of them, pks1, is an ortholog of the pksX operon with a previously unknown function in the sequenced model strain Bacillus subtilis 168, while the pks2 and pks3 clusters are novel gene clusters. Cassette mutagenesis combined with advanced mass spectrometric techniques such as matrix-assisted laser desorption ionization-time of flight mass spectrometry and liquid chromatography-electrospray ionization mass spectrometry revealed that the pks1 (bae) and pks3 (dif) gene clusters encode the biosynthesis of the polyene antibiotics bacillaene and difficidin or oxydifficidin, respectively. In addition, B. subtilis OKB105 (pheA sfp(0)), a transformant of the B. subtilis 168 derivative JH642, was shown to produce bacillaene, demonstrating that the pksX gene cluster directs the synthesis of that polyketide. The GenBank accession numbers for gene clusters pks1(bae), pks2, and pks3(dif) are AJ 634060.2, AJ 6340601.2, and AJ 6340602.2, respectively.


International Journal of Systematic and Evolutionary Microbiology | 2011

Relationship of Bacillus amyloliquefaciens clades associated with strains DSM 7T and FZB42T: a proposal for Bacillus amyloliquefaciens subsp. amyloliquefaciens subsp. nov. and Bacillus amyloliquefaciens subsp. plantarum subsp. nov. based on complete genome sequence comparisons

Rainer Borriss; Xiao-Hua Chen; Christian Rueckert; Jochen Blom; Anke Becker; Birgit Baumgarth; Ben Fan; Rüdiger Pukall; Peter Schumann; Cathrin Spröer; Helmut Junge; Joachim Vater; Alfred Pühler; Hans-Peter Klenk

The whole-genome-sequenced rhizobacterium Bacillus amyloliquefaciens FZB42(T) (Chen et al., 2007) and other plant-associated strains of the genus Bacillus described as belonging to the species Bacillus amyloliquefaciens or Bacillus subtilis are used commercially to promote the growth and improve the health of crop plants. Previous investigations revealed that a group of strains represented a distinct ecotype related to B. amyloliquefaciens; however, the exact taxonomic position of this group remains elusive (Reva et al., 2004). In the present study, we demonstrated the ability of a group of Bacillus strains closely related to strain FZB42(T) to colonize Arabidopsis roots. On the basis of their phenotypic traits, the strains were similar to Bacillus amyloliquefaciens DSM 7(T) but differed considerably from this type strain in the DNA sequences of genes encoding 16S rRNA, gyrase subunit A (gyrA) and histidine kinase (cheA). Phylogenetic analysis performed with partial 16S rRNA, gyrA and cheA gene sequences revealed that the plant-associated strains of the genus Bacillus, including strain FZB42(T), formed a lineage, which could be distinguished from the cluster of strains closely related to B. amyloliquefaciens DSM 7(T). DNA-DNA hybridizations (DDH) performed with genomic DNA from strains DSM 7(T) and FZB42(T) yielded relatedness values of 63.7-71.2 %. Several methods of genomic analysis, such as direct whole-genome comparison, digital DDH and microarray-based comparative genomichybridization (M-CGH) were used as complementary tests. The group of plant-associated strains could be distinguished from strain DSM 7(T) and the type strain of B. subtilis by differences in the potential to synthesize non-ribosomal lipopeptides and polyketides. Based on the differences found in the marker gene sequences and the whole genomes of these strains, we propose two novel subspecies, designated B. amyloliquefaciens subsp. plantarum subsp. nov., with the type strain FZB42(T) ( = DSM 23117(T) = BGSC 10A6(T)), and B. amyloliquefaciens subsp. amyloliquefaciens subsp. nov., with the type strain DSM 7(T)( = ATCC 23350(T) = Fukumoto Strain F(T)), for plant-associated and non-plant-associated representatives, respecitvely. This is in agreement with results of DDH and M-CGH tests and the MALDI-TOF MS of cellular components, all of which suggested that the ecovars represent two different subspecies.


Journal of Biotechnology | 2009

Difficidin and bacilysin produced by plant-associated Bacillus amyloliquefaciens are efficient in controlling fire blight disease

Xiao-Hua Chen; Romy Scholz; Michael Dr. Borriss; Helmut Junge; Gudrun Mögel; Stefan Kunz; Rainer Borriss

Representatives of Bacillus amyloliquefaciens were shown to possess biocontrol activity against fire blight, a serious disease of orchard trees caused by Erwinia amylovora. Genome analysis of B. amyloliquefaciens FZB42 identified gene clusters responsible for synthesis of several polyketide compounds with antibacterial action. We show here that the antibacterial polyketides difficidin and to a minor extent bacillaene act efficiently against E. amylovora. Surprisingly, a mutant strain blocked in the production of difficidin (CH8 Deltadfn) inhibited growth of E. amylovora and suppressed fire blight disease nearly in the same range as the wild type. In addition, a sfp mutant (CH3 Deltasfp) unable to synthesize non-ribosomally lipopeptides and polyketides did still suppress growth of E. amylovora, suggesting that besides action of polyketides another antagonistic principle exist. A double mutant (RS06 Deltasfp Deltabac) devoid in polyketide and bacilysin synthesis was unable to suppress growth of E. amylovora indicating that the additional inhibitory effect is due to production of bacilysin, a dipeptide whose synthesis does not depend on Sfp. We propose to use B. amyloliquefaciens strains with enhanced synthesis of difficidin and/or bacilysin for development of biocontrol agents efficient against fire blight disease.


Journal of Molecular Microbiology and Biotechnology | 2009

More than Anticipated – Production of Antibiotics and Other Secondary Metabolites by Bacillus amyloliquefaciens FZB42

Xiao-Hua Chen; Alexandra Koumoutsi; Romy Scholz; Rainer Borriss

The genome of environmental Bacillus amyloliquefaciens FZB42 harbors numerous gene clusters involved in synthesis of antifungal and antibacterial acting secondary metabolites. Five gene clusters, srf, bmy, fen, nrs, dhb, covering altogether 137 kb, direct non-ribosomal synthesis of the cyclic lipopeptides surfactin, bacillomycin, fengycin, an unknown peptide, and the iron siderophore bacillibactin. Bacillomycin and fengycin were shown to act against phytopathogenic fungi in a synergistic manner. Three gene clusters, mln, bae, and dif, with a total length of 199 kb were shown to direct synthesis of the antibacterial acting polyketides macrolactin, bacillaene, and difficidin. Both, non-ribosomal synthesis of cyclic lipopeptides and synthesis of polyketides are dependent on the presence of a functional sfp gene product, 4′-phosphopantetheinyl transferase, as evidenced by knockout mutation of the sfp gene resulting in complete absence of all those eight compounds. In addition, here we present evidence that a gene cluster encoding enzymes involved in synthesis and export of the antibacterial acting dipeptide bacilysin is also functional in FZB42. In summary, environmental FZB42 devoted about 340 kb, corresponding to 8.5% of its total genetic capacity, to synthesis of secondary metabolites useful to cope with other competing microorganisms present in the plant rhizosphere.


Journal of Bacteriology | 2011

Plantazolicin, a Novel Microcin B17/Streptolysin S-Like Natural Product from Bacillus amyloliquefaciens FZB42

Romy Scholz; Katie J. Molohon; Jonny Nachtigall; Joachim Vater; Andrew L. Markley; Roderich D. Süssmuth; Douglas A. Mitchell; Rainer Borriss

Here we report on a novel thiazole/oxazole-modified microcin (TOMM) from Bacillus amyloliquefaciens FZB42, a Gram-positive soil bacterium. This organism is well known for stimulating plant growth and biosynthesizing complex small molecules that suppress the growth of bacterial and fungal plant pathogens. Like microcin B17 and streptolysin S, the TOMM from B. amyloliquefaciens FZB42 undergoes extensive posttranslational modification to become a bioactive natural product. Our data show that the modified peptide bears a molecular mass of 1,335 Da and displays antibacterial activity toward closely related Gram-positive bacteria. A cluster of 12 genes that covers ∼10 kb is essential for the production, modification, export, and self-immunity of this natural product. We have named this compound plantazolicin (PZN), based on the association of several producing organisms with plants and the incorporation of azole heterocycles, which derive from Cys, Ser, and Thr residues of the precursor peptide.

Collaboration


Dive into the Rainer Borriss's collaboration.

Top Co-Authors

Avatar

Joachim Vater

Technical University of Berlin

View shared research outputs
Top Co-Authors

Avatar

Ben Fan

Nanjing Forestry University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xuewen Gao

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Alexandra Koumoutsi

Humboldt University of Berlin

View shared research outputs
Top Co-Authors

Avatar

Huijun Wu

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Xiao-Hua Chen

Humboldt University of Berlin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge