Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rainer Breitling is active.

Publication


Featured researches published by Rainer Breitling.


FEBS Letters | 2004

Rank products: a simple, yet powerful, new method to detect differentially regulated genes in replicated microarray experiments ☆

Rainer Breitling; Patrick Armengaud; Anna Amtmann; Pawel Herzyk

One of the main objectives in the analysis of microarray experiments is the identification of genes that are differentially expressed under two experimental conditions. This task is complicated by the noisiness of the data and the large number of genes that are examined simultaneously. Here, we present a novel technique for identifying differentially expressed genes that does not originate from a sophisticated statistical model but rather from an analysis of biological reasoning. The new technique, which is based on calculating rank products (RP) from replicate experiments, is fast and simple. At the same time, it provides a straightforward and statistically stringent way to determine the significance level for each gene and allows for the flexible control of the false‐detection rate and familywise error rate in the multiple testing situation of a microarray experiment. We use the RP technique on three biological data sets and show that in each case it performs more reliably and consistently than the non‐parametric t‐test variant implemented in Tusher et al.s significance analysis of microarrays (SAM). We also show that the RP results are reliable in highly noisy data. An analysis of the physiological function of the identified genes indicates that the RP approach is powerful for identifying biologically relevant expression changes. In addition, using RP can lead to a sharp reduction in the number of replicate experiments needed to obtain reproducible results.


Nucleic Acids Research | 2015

antiSMASH 3.0—a comprehensive resource for the genome mining of biosynthetic gene clusters

Tilmann Weber; Kai Blin; Srikanth Duddela; Daniel Krug; Hyun Uk Kim; Robert E. Bruccoleri; Sang Yup Lee; Michael A. Fischbach; Rolf Müller; Wolfgang Wohlleben; Rainer Breitling; Eriko Takano; Marnix H. Medema

Abstract Microbial secondary metabolism constitutes a rich source of antibiotics, chemotherapeutics, insecticides and other high-value chemicals. Genome mining of gene clusters that encode the biosynthetic pathways for these metabolites has become a key methodology for novel compound discovery. In 2011, we introduced antiSMASH, a web server and stand-alone tool for the automatic genomic identification and analysis of biosynthetic gene clusters, available at http://antismash.secondarymetabolites.org. Here, we present version 3.0 of antiSMASH, which has undergone major improvements. A full integration of the recently published ClusterFinder algorithm now allows using this probabilistic algorithm to detect putative gene clusters of unknown types. Also, a new dereplication variant of the ClusterBlast module now identifies similarities of identified clusters to any of 1172 clusters with known end products. At the enzyme level, active sites of key biosynthetic enzymes are now pinpointed through a curated pattern-matching procedure and Enzyme Commission numbers are assigned to functionally classify all enzyme-coding genes. Additionally, chemical structure prediction has been improved by incorporating polyketide reduction states. Finally, in order for users to be able to organize and analyze multiple antiSMASH outputs in a private setting, a new XML output module allows offline editing of antiSMASH annotations within the Geneious software.


Nucleic Acids Research | 2011

antiSMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences

Marnix H. Medema; Kai Blin; Peter Cimermancic; Victor de Jager; Piotr Zakrzewski; Michael A. Fischbach; Tilmann Weber; Eriko Takano; Rainer Breitling

Bacterial and fungal secondary metabolism is a rich source of novel bioactive compounds with potential pharmaceutical applications as antibiotics, anti-tumor drugs or cholesterol-lowering drugs. To find new drug candidates, microbiologists are increasingly relying on sequencing genomes of a wide variety of microbes. However, rapidly and reliably pinpointing all the potential gene clusters for secondary metabolites in dozens of newly sequenced genomes has been extremely challenging, due to their biochemical heterogeneity, the presence of unknown enzymes and the dispersed nature of the necessary specialized bioinformatics tools and resources. Here, we present antiSMASH (antibiotics & Secondary Metabolite Analysis Shell), the first comprehensive pipeline capable of identifying biosynthetic loci covering the whole range of known secondary metabolite compound classes (polyketides, non-ribosomal peptides, terpenes, aminoglycosides, aminocoumarins, indolocarbazoles, lantibiotics, bacteriocins, nucleosides, beta-lactams, butyrolactones, siderophores, melanins and others). It aligns the identified regions at the gene cluster level to their nearest relatives from a database containing all other known gene clusters, and integrates or cross-links all previously available secondary-metabolite specific gene analysis methods in one interactive view. antiSMASH is available at http://antismash.secondarymetabolites.org.


Nucleic Acids Research | 2013

antiSMASH 2.0—a versatile platform for genome mining of secondary metabolite producers

Kai Blin; Marnix H. Medema; Daniyal Kazempour; Michael A. Fischbach; Rainer Breitling; Eriko Takano; Tilmann Weber

Microbial secondary metabolites are a potent source of antibiotics and other pharmaceuticals. Genome mining of their biosynthetic gene clusters has become a key method to accelerate their identification and characterization. In 2011, we developed antiSMASH, a web-based analysis platform that automates this process. Here, we present the highly improved antiSMASH 2.0 release, available at http://antismash.secondarymetabolites.org/. For the new version, antiSMASH was entirely re-designed using a plug-and-play concept that allows easy integration of novel predictor or output modules. antiSMASH 2.0 now supports input of multiple related sequences simultaneously (multi-FASTA/GenBank/EMBL), which allows the analysis of draft genomes comprising multiple contigs. Moreover, direct analysis of protein sequences is now possible. antiSMASH 2.0 has also been equipped with the capacity to detect additional classes of secondary metabolites, including oligosaccharide antibiotics, phenazines, thiopeptides, homo-serine lactones, phosphonates and furans. The algorithm for predicting the core structure of the cluster end product is now also covering lantipeptides, in addition to polyketides and non-ribosomal peptides. The antiSMASH ClusterBlast functionality has been extended to identify sub-clusters involved in the biosynthesis of specific chemical building blocks. The new features currently make antiSMASH 2.0 the most comprehensive resource for identifying and analyzing novel secondary metabolite biosynthetic pathways in microorganisms.


Bioinformatics | 2006

RankProd: a bioconductor package for detecting differentially expressed genes in meta-analysis

Fangxin Hong; Rainer Breitling; Connor McEntee; Ben S. Wittner; Jennifer L. Nemhauser; Joanne Chory

UNLABELLED While meta-analysis provides a powerful tool for analyzing microarray experiments by combining data from multiple studies, it presents unique computational challenges. The Bioconductor package RankProd provides a new and intuitive tool for this purpose in detecting differentially expressed genes under two experimental conditions. The package modifies and extends the rank product method proposed by Breitling et al., [(2004) FEBS Lett., 573, 83-92] to integrate multiple microarray studies from different laboratories and/or platforms. It offers several advantages over t-test based methods and accepts pre-processed expression datasets produced from a wide variety of platforms. The significance of the detection is assessed by a non-parametric permutation test, and the associated P-value and false discovery rate (FDR) are included in the output alongside the genes that are detected by user-defined criteria. A visualization plot is provided to view actual expression levels for each gene with estimated significance measurements. AVAILABILITY RankProd is available at Bioconductor http://www.bioconductor.org. A web-based interface will soon be available at http://cactus.salk.edu/RankProd


Plant Physiology | 2004

The Potassium-Dependent Transcriptome of Arabidopsis Reveals a Prominent Role of Jasmonic Acid in Nutrient Signaling

Patrick Armengaud; Rainer Breitling; Anna Amtmann

Full genome microarrays were used to assess transcriptional responses of Arabidopsis seedlings to changing external supply of the essential macronutrient potassium (K+). Rank product statistics and iterative group analysis were employed to identify differentially regulated genes and statistically significant coregulated sets of functionally related genes. The most prominent response was found for genes linked to the phytohormone jasmonic acid (JA). Transcript levels for the JA biosynthetic enzymes lipoxygenase, allene oxide synthase, and allene oxide cyclase were strongly increased during K+ starvation and quickly decreased after K+ resupply. A large number of well-known JA responsive genes showed the same expression profile, including genes involved in storage of amino acids (VSP), glucosinolate production (CYP79), polyamine biosynthesis (ADC2), and defense (PDF1.2). Our findings highlight a novel role of JA in nutrient signaling and stress management through a variety of physiological processes such as nutrient storage, recycling, and reallocation. Other highly significant K+-responsive genes discovered in our study encoded cell wall proteins (e.g. extensins and arabinogalactans) and ion transporters (e.g. the high-affinity K+ transporter HAK5 and the nitrate transporter NRT2.1) as well as proteins with a putative role in Ca2+ signaling (e.g. calmodulins). On the basis of our results, we propose candidate genes involved in K+ perception and signaling as well as a network of molecular processes underlying plant adaptation to K+ deficiency.


Nature Cell Biology | 2006

Regulation of ubiquitin-binding proteins by monoubiquitination

Daniela Hoeller; Nicola Crosetto; Blagoy Blagoev; Camilla Raiborg; Ritva Tikkanen; Sebastian A. Wagner; Katarzyna Kowanetz; Rainer Breitling; Matthias Mann; Harald Stenmark; Ivan Dikic

Proteins containing ubiquitin-binding domains (UBDs) interact with ubiquitinated targets and regulate diverse biological processes, including endocytosis, signal transduction, transcription and DNA repair. Many of the UBD-containing proteins are also themselves monoubiquitinated, but the functional role and the mechanisms that underlie this modification are less well understood. Here, we demonstrate that monoubiquitination of the endocytic proteins Sts1, Sts2, Eps15 and Hrs results in intramolecular interactions between ubiquitin and their UBDs, thereby preventing them from binding in trans to ubiquitinated targets. Permanent monoubiquitination of these proteins, mimicked by the fusion of ubiquitin to their carboxyl termini, impairs their ability to regulate trafficking of ubiquitinated receptors. Moreover, we mapped the in vivo monoubiquitination site in Sts2 and demonstrated that its mutation enhances the Sts2-mediated effects of epidermal-growth-factor-receptor downregulation. We propose that monoubiquitination of ubiquitin-binding proteins inhibits their capacity to bind to and control the functions of ubiquitinated targets in vivo.


PLOS Genetics | 2008

C-elegans model identifies genetic modifiers of alpha-synuclein inclusion formation during aging

Tjakko J. van Ham; Karen L. Thijssen; Rainer Breitling; Robert M. W. Hofstra; Ronald H.A. Plasterk; Ellen A. A. Nollen

Inclusions in the brain containing α-synuclein are the pathological hallmark of Parkinsons disease, but how these inclusions are formed and how this links to disease is poorly understood. We have developed a C. elegans model that makes it possible to monitor, in living animals, the formation of α-synuclein inclusions. In worms of old age, inclusions contain aggregated α- synuclein, resembling a critical pathological feature. We used genome-wide RNA interference to identify processes involved in inclusion formation, and identified 80 genes that, when knocked down, resulted in a premature increase in the number of inclusions. Quality control and vesicle-trafficking genes expressed in the ER/Golgi complex and vesicular compartments were overrepresented, indicating a specific role for these processes in α-synuclein inclusion formation. Suppressors include aging-associated genes, such as sir-2.1/SIRT1 and lagr-1/LASS2. Altogether, our data suggest a link between α-synuclein inclusion formation and cellular aging, likely through an endomembrane-related mechanism. The processes and genes identified here present a framework for further study of the disease mechanism and provide candidate susceptibility genes and drug targets for Parkinsons disease and other α-synuclein related disorders.


Nature Genetics | 2009

System-wide molecular evidence for phenotypic buffering in Arabidopsis

Jingyuan Fu; Joost J. B. Keurentjes; Harro J. Bouwmeester; Twan America; Francel Verstappen; Jane L. Ward; Michael H. Beale; Ric C. H. de Vos; Martijn Dijkstra; Richard A. Scheltema; Frank Johannes; Maarten Koornneef; Dick Vreugdenhil; Rainer Breitling; Ritsert C. Jansen

We profiled 162 lines of Arabidopsis for variation in transcript, protein and metabolite abundance using mRNA microarrays, two-dimensional polyacrylamide gel electrophoresis, gas chromatography time-of-flight mass spectrometry, liquid chromatography quadrupole time-of-flight mass spectrometry, and proton nuclear magnetic resonance. We added all publicly available phenotypic data from the same lines and mapped quantitative trait loci (QTL) for 40,580 molecular and 139 phenotypic traits. We found six QTL hot spots with major, system-wide effects, suggesting there are six breakpoints in a system otherwise buffered against many of the 500,000 SNPs.


Analytical Chemistry | 2011

Toward Global Metabolomics Analysis with Hydrophilic Interaction Liquid Chromatography-Mass Spectrometry: Improved Metabolite Identification by Retention Time Prediction

Darren J. Creek; Andris Jankevics; Rainer Breitling; David G. Watson; Michael P. Barrett; Karl Burgess

Metabolomics is an emerging field of postgenomic biology concerned with comprehensive analysis of small molecules in biological systems. However, difficulties associated with the identification of detected metabolites currently limit its application. Here we demonstrate that a retention time prediction model can improve metabolite identification on a hydrophilic interaction chromatography (HILIC)-high-resolution mass spectrometry metabolomics platform. A quantitative structure retention relationship (QSRR) model, incorporating six physicochemical variables in a multiple-linear regression based on 120 authentic standard metabolites, shows good predictive ability for retention times of a range of metabolites (cross-validated R(2) = 0.82 and mean squared error = 0.14). The predicted retention times improved metabolite identification by removing 40% of the false identifications that occurred with identification by accurate mass alone. The importance of this procedure was demonstrated by putative identification of 690 metabolites in extracts of the protozoan parasite Trypanosoma brucei, thus allowing identified metabolites to be mapped onto an organism-wide metabolic network, providing opportunities for future studies of cellular metabolism from a global systems biology perspective.

Collaboration


Dive into the Rainer Breitling's collaboration.

Top Co-Authors

Avatar

Eriko Takano

University of Manchester

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marnix H. Medema

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Monika Heiner

Brandenburg University of Technology

View shared research outputs
Top Co-Authors

Avatar

Jean-Claude Dujardin

Institute of Tropical Medicine Antwerp

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge