Rainer F. Winter
University of Konstanz
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rainer F. Winter.
Chemistry: A European Journal | 2011
Daniel Siebler; Michael Linseis; Teuta Gasi; Luca Carrella; Rainer F. Winter; Christoph Förster; Katja Heinze
Trinuclear ferrocene tris-amides were synthesized from an Fmoc- or Boc-protected ferrocene amino acid, and hydrogen-bonded zigzag conformations were determined by NMR spectroscopy, molecular modelling, and X-ray diffraction. In these ordered secondary structures orientation of the individual amide dipole moments approximately in the same direction results in a macrodipole moment similar to that of α-helices composed of α-amino acids. Unlike ordinary α-amino acids, the building blocks in these ferrocene amides with defined secondary structure can be sequentially oxidized to mono-, di-, and trications. Singly and doubly charged mixed-valent cations were probed experimentally by Vis/NIR, paramagnetic ¹H NMR and Mössbauer spectroscopy and investigated theoretically by DFT calculations. According to the appearance of intervalence charge transfer (IVCT) bands in solution, the ferrocene/ferrocenium amides are described as Robin-Day class II mixed-valent systems. Mössbauer spectroscopy indicates trapped valences in the solid state. The secondary structure of trinuclear ferrocene tris-amides remains intact (coiled form) upon oxidation to mono- and dications according to DFT calculations, while oxidation to the trication should break the intramolecular hydrogen bonding and unfold the ferrocene peptide (uncoiled form).
Journal of the American Chemical Society | 2013
Franziska Lissel; Thomas Fox; Olivier Blacque; Walther Polit; Rainer F. Winter; Koushik Venkatesan; Heinz Berke
trans-Fe(depe)2I2 (depe =1,2-bis(diethylphosphino)ethane) was employed to stepwise incorporate Fe(II) centers into a rigid-rod butadiyne based 5,10,15,20-tetraferratetracosa-1,3,6,8,11,13,16,18,21,23-decayne. The iterative synthesis first connects two Fe(II) centers via a central butadiynediyl ligand to provide I-Fe(depe)2-C4-Fe(depe)2-I (2), then extends the system by substituting the terminal halides of 2 to yield Me3SiC4-Fe(depe)2-C4-Fe(depe)2-C4SiMe3 (3). Further modification of the termini gives the deprotected and stannylated compounds RC4-Fe(depe)2-C4-Fe(depe)2-C4R (4 and 5; R = H, Sn(CH3)3, respectively). Transmetalation with two more mononuclear units furnishes the homometallic tetranuclear compound I-Fe(depe)2-C4-Fe(depe)2-C4-Fe(depe)2-C4-Fe(depe)2-I (6), to which two more butadiynyl units were attached to give Me3SiC4-Fe(depe)2-C4-Fe(depe)2-C4-Fe(depe)2-C4-Fe(depe)2-C4SiMe3 (7). All compounds were characterized by NMR, IR, and Raman spectroscopies and by elemental analyses. X-ray diffraction studies were carried out on the dinuclear complexes revealing highly symmetrical rigid-rod structures. Cyclic voltammetric studies showed that compounds 2-7 undergo reversible and well-defined oxidations with high Kc values indicating thermodynamically stable mixed valence species. While the number of the oxidation waves of compounds 2, 6, and 7 are equivalent to the number of metal centers, the dinuclear complexes 3, 4, and 5 exhibit three reversible oxidation waves, one at significantly more positive potential. Two redox waves were attributed to the oxidation of the metal centers, while the remaining one is due to the oxidation of the butadiynediyl ligand. The electronic properties of complexes 2, 3, and 7 were investigated by spectroelectrochemical measurements.
Chemistry: A European Journal | 2018
Stefan Vanicek; Maren Podewitz; Christopher Hassenrück; Michael Pittracher; Holger Kopacka; Thomas Müller; Klaus R. Liedl; Rainer F. Winter; Benno Bildstein
Abstract Oxidative addition of cobaltoceniumdiazonium bis(hexafluoridophosphate) with (pseudo)halide aurates gave gold(III) complexes containing zwitterionic cobaltoceniumide as a ligand. Its selenium derivative, cobaltoceniumselenolate, was obtained by an electrophilic aromatic substitution reaction of iodocobaltocenium iodide with Na2Se. Spectroscopic and structural data in combination with DFT calculations showed that this cobaltocenylidene species is a mesoionic carbene quite different from common N‐heterocyclic carbenes. Its ligand properties (TEP, singlet‐triplet gap, nucleophilicity, π‐acidity, Brønsted basicity) are in part comparable to those of cyclic (amino)(alkyl/aryl)carbenes. Electrochemistry data showed that the mesoionic cobaltoceniumides are more electron‐rich than their parent ferrocenes. The reversible reduction of the tricyanido gold complex appears 50u2005mV negative of the cobaltocenium/cobaltocene couple, whereas that of the selenide derivative is shifted cathodically by 550u2005mV.
ACS Omega | 2018
Stefan Bitter; Marius Kunkel; Lisa Burkart; André Mang; Rainer F. Winter; Sebastian Polarz
Surfactants are functional molecules comprising a water-compatible head group and a hydrophobic tail. One of their features is the formation of self-assembled structures in contact with water, for instance, micelles, vesicles, or lyotropic liquid crystals. One way to increase the functionality of surfactants is to implement moieties containing transition-metal species. Ferrocene-based surfactants represent an excellent example because of the distinguished redox features. In most existing ferrocene-based amphiphiles, an alkyl chain is classically used as the hydrophobic tail. We report the synthesis and properties of 1-triisopropylsilylethynyl-1′-trimethylammoniummethylferrocene (FcNMe3TIPS). In FcNMe3TIPS, ferrocene is part of the head group (Gemini design) but is also attached to a (protected) π-conjugated ethynyl group. Although this architecture differs from that of classical amphiphiles and those of other ferrocene-based amphiphiles, the compound shows marked surfactant properties comparable to those of lipids, exhibiting a very low value of critical aggregation concentration in water (cac = 0.03 mM). It forms classical micelles only in a very narrow concentration range, which then convert into monolayer vesicles. Unlike classical surfactants, aggregates already form at a very low concentration, far beneath that required for the formation of a monolayer at the air–water interface. At even higher concentration, FcNMe3TIPS forms lyotropic liquid crystals, not only in contact with water, but also in a variety of organic solvents. As an additional intriguing feature, FcNMe3TIPS is amenable to a range of further modification reactions. The TIPS group is easily cleaved, and the resulting ethynyl function can be used to construct heterobimetallic platinum-ferrocene conjugates with trans-Pt(PEt3)2X (X = Cl, I) complex entities, leading to a heterobimetallic surfactant. We also found that the benzylic α-position of FcNMe3TIPS is rather reactive and that the attached ammonium group can be exchanged by other substituents (e.g., −CN), which offers additional opportunities for further functionalization. Although FcNMe3TIPS is reversibly oxidized in voltammetric and UV–vis spectroelectrochemical experiments, the high reactivity at the α-position is also responsible for the instability of the corresponding ferrocenium ion, leading to a polymerization reaction.
Journal of Coordination Chemistry | 2017
Wasfi A. Al-Masoudi; Najim A. Al-Masoudi; Bernhard Weibert; Rainer F. Winter
Abstract Three new ruthenium(II)-arene complexes of the general formula [{(η6-p-cymene)Ru(L)}2](Cl)2), where L are monastrol (L1), ethyl 4-(3-hydroxyphenyl)-6-methyl-2-thioxo-pyrimidine-5-carboxylate (L2) or its 4-bromophenyl analog (L3), have been synthesized and characterized by elemental analysis, 1H, 13C, and 2-D NMR spectroscopy. The X-ray diffraction study of complex 1 showed the presence of a dicationic diruthenium complex where two thioxopyrimidines act as tridentate μ,κN:κ2S ligand, bridging two Ru ions through the pyrimidine nitrogen and sulfur atoms. All new complexes were evaluated in vitro for their antiviral activity against the replication of HIV-1 and HIV-2 in MT-4 cells using MTT assay. Additionally, complexes 1–3 were screened for their inhibitory activity against the ATPase enzyme and the motor-protein Kinesin Eg5. Complex 1 was found to inhibit microtubule-stimulated ATPase activity of kinesin of IC50 = 30 μM (monastrol, IC50 = 10 μM).
3rd bwHPC Symposium | 2017
Christopher Hassenrück; Rainer F. Winter
Using the HPC ressources of the state of Baden-Wurttemberg, we modelled for the first time the luminous burst from a young massive star by accretion of material from its close environment. We found that the surroundings of young massive stars are shaped as a clumpy disk whose fragments provoke outbursts once they fall onto the protostar and concluded that similar strong luminous events observed in high-mass star forming regions may be a signature of the presence of such disks.In this work, system monitoring and analysis are discussed in terms of their significance and benefits for operations and research in the field of high-performance computing (HPC). HPC systems deliver unique insights to computational scientists from different disciplines. It is argued that research in HPC is also computational in nature, given the massive amounts of monitoring data collected at various levels of an HPC system. The vision of a comprehensive system model developed based on holistic monitoring and analysis is also presented. The goal and expected outcome of such a model is an improved understanding of the intricate interactions between todays software and hardware, and their diverse usage patterns. The associated modeling, monitoring, and analysis challenges are reviewed and discussed. The envisioned comprehensive system model will provide the ability to design future systems that are better understood before use, easier to maintain and monitor, more efficient, more reliable, and, therefore, more productive. The paper is concluded with a number of recommendations towards realizing the envisioned system model.
Chemical Communications | 2014
Holger Bußkamp; Ellen Batroff; Andrea Niederwieser; Obadah S. Abdel-Rahman; Rainer F. Winter; Valentin Wittmann; Andreas Marx
Physical Chemistry Chemical Physics | 2015
Martin Wessig; Martin Spitzbarth; Malte Drescher; Rainer F. Winter; Sebastian Polarz
Inorganics | 2015
Andrej Jackel; Michael Linseis; Christian Häge; Rainer F. Winter
European Journal of Inorganic Chemistry | 2011
Daniela Eisenstecken; Barbara Enk; Holger Kopacka; Thomas Müller; Florian Pevny; Rainer F. Winter; Benno Bildstein