Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rainer G. Ulrich is active.

Publication


Featured researches published by Rainer G. Ulrich.


Nature Communications | 2012

Bats host major mammalian paramyxoviruses

Drexler Jf; Victor Max Corman; Marcel A. Müller; Gaël D. Maganga; Peter Vallo; Tabea Binger; Florian Gloza-Rausch; Veronika M. Cottontail; Andrea Rasche; Stoian Yordanov; Antje Seebens; Mirjam Knörnschild; Samuel Oppong; Adu Sarkodie Y; Pongombo C; Alexander N. Lukashev; Jonas Schmidt-Chanasit; Andreas Stöcker; Aroldo José Borges Carneiro; Stephanie Erbar; Andrea Maisner; Florian Fronhoffs; Reinhard Buettner; Elisabeth K. V. Kalko; Thomas Kruppa; Carlos Roberto Franke; René Kallies; Yandoko Er; Georg Herrler; Chantal Reusken

The large virus family Paramyxoviridae includes some of the most significant human and livestock viruses, such as measles-, distemper-, mumps-, parainfluenza-, Newcastle disease-, respiratory syncytial virus and metapneumoviruses. Here we identify an estimated 66 new paramyxoviruses in a worldwide sample of 119 bat and rodent species (9,278 individuals). Major discoveries include evidence of an origin of Hendra- and Nipah virus in Africa, identification of a bat virus conspecific with the human mumps virus, detection of close relatives of respiratory syncytial virus, mouse pneumonia- and canine distemper virus in bats, as well as direct evidence of Sendai virus in rodents. Phylogenetic reconstruction of host associations suggests a predominance of host switches from bats to other mammals and birds. Hypothesis tests in a maximum likelihood framework permit the phylogenetic placement of bats as tentative hosts at ancestral nodes to both the major Paramyxoviridae subfamilies (Paramyxovirinae and Pneumovirinae). Future attempts to predict the emergence of novel paramyxoviruses in humans and livestock will have to rely fundamentally on these data. Supplementary information The online version of this article (doi:10.1038/ncomms1796) contains supplementary material, which is available to authorized users.


Journal of General Virology | 2010

Detection of a novel hepatitis E-like virus in faeces of wild rats using a nested broad-spectrum RT-PCR

Reimar Johne; Anita Plenge-Bönig; Michael Hess; Rainer G. Ulrich; Jochen Reetz; Anika Schielke

Hepatitis E is a rare human disease in developed countries. It is caused by hepatitis E virus (HEV), which is probably transmitted zoonotically to humans from domestic pigs and wild boars. Multiple reports on the detection of HEV-specific antibodies in rats have suggested the presence of an HEV-related agent; however, infectious virus or a viral genome has not been demonstrated so far. Here, a nested broad-spectrum RT-PCR protocol was developed capable of detecting different HEV types including those derived from wild boar and chicken. Screening of 30 faecal samples from wild Norway rats (Rattus norvegicus) from Hamburg (Germany) resulted in the detection of two sequences with similarities to human, mammalian and avian HEV. Virus particles with a morphology reminiscent of HEV were demonstrated by immunoelectron microscopy in one of these samples and the virus was tentatively designated rat HEV. Genome fragments with sizes of 4019 and 1545 nt were amplified from two samples. Sequence comparison with human and avian strains revealed only 59.9 and 49.9 % sequence identity, respectively. Similarly, the deduced amino acid sequence for the complete capsid protein had 56.2 and 42.9 % identity with human and avian strains, respectively. Inoculation of the samples onto three different permanent rat liver cell lines did not result in detectable virus replication as assayed by RT-PCR with cells of the fifth virus passage. Further investigations are necessary to clarify the zoonotic potential of rat HEV and to assess its suitability to serve in a laboratory rat animal model for human hepatitis E.


Journal of Virology | 2012

Bats Worldwide Carry Hepatitis E Virus-Related Viruses That Form a Putative Novel Genus within the Family Hepeviridae

Jan Felix Drexler; Annika Seelen; Victor Max Corman; Adriana Fumie Tateno; Veronika M. Cottontail; Rodrigo Melim Zerbinati; Florian Gloza-Rausch; Stefan M. Klose; Yaw Adu-Sarkodie; Samuel Oppong; Elisabeth K. V. Kalko; Andreas Osterman; Andrea Rasche; Alexander C. Adam; Marcel A. Müller; Rainer G. Ulrich; Eric Leroy; Alexander N. Lukashev; Christian Drosten

ABSTRACT Hepatitis E virus (HEV) is one of the most common causes of acute hepatitis in tropical and temperate climates. Tropical genotypes 1 and 2 are associated with food-borne and waterborne transmission. Zoonotic reservoirs (mainly pigs, wild boar, and deer) are considered for genotypes 3 and 4, which exist in temperate climates. In view of the association of several zoonotic viruses with bats, we analyzed 3,869 bat specimens from 85 different species and from five continents for hepevirus RNA. HEVs were detected in African, Central American, and European bats, forming a novel phylogenetic clade in the family Hepeviridae. Bat hepeviruses were highly diversified and comparable to human HEV in sequence variation. No evidence for the transmission of bat hepeviruses to humans was found in over 90,000 human blood donations and individual patient sera. Full-genome analysis of one representative virus confirmed formal classification within the family Hepeviridae. Sequence- and distance-based taxonomic evaluations suggested that bat hepeviruses constitute a distinct genus within the family Hepeviridae and that at least three other genera comprising human, rodent, and avian hepeviruses can be designated. This may imply that hepeviruses invaded mammalian hosts nonrecently and underwent speciation according to their host restrictions. Human HEV-related viruses in farmed and peridomestic animals might represent secondary acquisitions of human viruses, rather than animal precursors causally involved in the evolution of human HEV.


Emerging Infectious Diseases | 2010

Novel Hepatitis E Virus Genotype in Norway Rats, Germany

Reimar Johne; Gerald Heckel; Anita Plenge-Bönig; Eveline Kindler; Christina Maresch; Jochen Reetz; Anika Schielke; Rainer G. Ulrich

Human hepatitis E virus infections may be caused by zoonotic transmission of virus genotypes 3 and 4. To determine whether rodents are a reservoir, we analyzed the complete nucleotide sequence of a hepatitis E–like virus from 2 Norway rats in Germany. The sequence suggests a separate genotype for this hepatotropic virus.


Immunological Reviews | 2008

Hantavirus-induced immunity in rodent reservoirs and humans.

Günther Schönrich; Andreas Rang; Nina Lütteke; Martin J. Raftery; Nathalie Charbonnel; Rainer G. Ulrich

Summary: Hantaviruses are predominantly rodent‐borne pathogens, although recently novel shrew‐associated hantaviruses were found. Within natural reservoir hosts, hantairuses do not cause obvious pathogenetic effects; transmission to humans, however, can lead to hemorrhagic fever with renal syndrome or hantavirus cardiopulmonary syndrome, depending on the virus species involved. This review is focussed on the recent knowledge on hantavirus‐induced immune responses in rodent reservoirs and humans and their impact on susceptibility, transmission, and outcome of hantavirus infections. In addition, this review incorporates a discussion on the potential role of direct cell‐virus interactions in the pathogenesis of hantavirus infections in humans. Finally, questions for further research efforts on the immune responses in potential hantavirus reservoir hosts and humans are summarized.


Journal of Virology | 2002

Hantavirus Infection of Dendritic Cells

Martin J. Raftery; Annette A. Kraus; Rainer G. Ulrich; Detlev H. Krüger; Günther Schönrich

ABSTRACT Dendritic cells (DCs) play a pivotal role as antigen-presenting cells in the antiviral immune response. Here we show that Hantaan virus (HTNV), which belongs to the Bunyaviridae family (genus Hantavirus) and causes hemorrhagic fever with renal syndrome, productively infects human DCs in vitro. In the course of HTNV infection, DCs did not show any cytopathic effect and viral replication did not induce cell lysis or apoptosis. Furthermore, HTNV did not affect apoptosis-inducing signals that are important for the homeostatic control of mature DCs. In contrast to immunosuppressive viruses, e.g., human cytomegalovirus, HTNV activated immature DCs, resulting in upregulation of major histocompatibility complex (MHC), costimulatory, and adhesion molecules. Intriguingly, strong upregulation of MHC class I molecules and an increased intercellular cell adhesion molecule type 1 expression was also detected on HTNV-infected endothelial cells. In addition, antigen uptake by HTNV-infected DCs was reduced, another characteristic feature of DC maturation. Consistent with these findings, we observed that HTNV-infected DCs stimulated T cells as efficiently as did mature DCs. Finally, infection of DCs with HTNV induced the release of the proinflammatory cytokines tumor necrosis factor alpha and alpha interferon. Taken together, our findings indicate that hantavirus-infected DCs may significantly contribute to hantavirus-associated pathogenesis.


PLOS Pathogens | 2013

Evidence for novel hepaciviruses in rodents.

Jan Felix Drexler; Victor Max Corman; Marcel A. Müller; Alexander N. Lukashev; Anatoly P. Gmyl; Bruno Coutard; Alexander C. Adam; Daniel Ritz; Lonneke M. Leijten; Debby van Riel; René Kallies; Stefan M. Klose; Florian Gloza-Rausch; Tabea Binger; Augustina Annan; Yaw Adu-Sarkodie; Samuel Oppong; Mathieu Bourgarel; Daniel Rupp; Bernd Hoffmann; Mathias Schlegel; Beate M. Kümmerer; Detlev H. Krüger; Jonas Schmidt-Chanasit; Alvaro Aguilar Setién; Veronika M. Cottontail; Thiravat Hemachudha; Supaporn Wacharapluesadee; Klaus Osterrieder; Ralf Bartenschlager

Hepatitis C virus (HCV) is among the most relevant causes of liver cirrhosis and hepatocellular carcinoma. Research is complicated by a lack of accessible small animal models. The systematic investigation of viruses of small mammals could guide efforts to establish such models, while providing insight into viral evolutionary biology. We have assembled the so-far largest collection of small-mammal samples from around the world, qualified to be screened for bloodborne viruses, including sera and organs from 4,770 rodents (41 species); and sera from 2,939 bats (51 species). Three highly divergent rodent hepacivirus clades were detected in 27 (1.8%) of 1,465 European bank voles (Myodes glareolus) and 10 (1.9%) of 518 South African four-striped mice (Rhabdomys pumilio). Bats showed anti-HCV immunoblot reactivities but no virus detection, although the genetic relatedness suggested by the serologic results should have enabled RNA detection using the broadly reactive PCR assays developed for this study. 210 horses and 858 cats and dogs were tested, yielding further horse-associated hepaciviruses but none in dogs or cats. The rodent viruses were equidistant to HCV, exceeding by far the diversity of HCV and the canine/equine hepaciviruses taken together. Five full genomes were sequenced, representing all viral lineages. Salient genome features and distance criteria supported classification of all viruses as hepaciviruses. Quantitative RT-PCR, RNA in-situ hybridisation, and histopathology suggested hepatic tropism with liver inflammation resembling hepatitis C. Recombinant serology for two distinct hepacivirus lineages in 97 bank voles identified seroprevalence rates of 8.3 and 12.4%, respectively. Antibodies in bank vole sera neither cross-reacted with HCV, nor the heterologous bank vole hepacivirus. Co-occurrence of RNA and antibodies was found in 3 of 57 PCR-positive bank vole sera (5.3%). Our data enable new hypotheses regarding HCV evolution and encourage efforts to develop rodent surrogate models for HCV.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Bats carry pathogenic hepadnaviruses antigenically related to hepatitis B virus and capable of infecting human hepatocytes

Jan Felix Drexler; Andreas Geipel; Alexander König; Victor Max Corman; Debby van Riel; Lonneke M. Leijten; Corinna M. Bremer; Andrea Rasche; Veronika M. Cottontail; Gaël D. Maganga; Mathias Schlegel; Marcel A. Müller; Alexander C. Adam; Stefan M. Klose; Aroldo José Borges Carneiro; Andreas Stöcker; Carlos Roberto Franke; Florian Gloza-Rausch; Joachim Geyer; Augustina Annan; Yaw Adu-Sarkodie; Samuel Oppong; Tabea Binger; Peter Vallo; Marco Tschapka; Rainer G. Ulrich; Wolfram H. Gerlich; Eric M. Leroy; Thijs Kuiken; Dieter Glebe

Significance Hepatitis B virus (HBV) is the prototype hepadnavirus; 40% of humans have current or past infection. In a global investigation of viral diversity in bats, we discovered three unique hepadnavirus species. The relatedness of these viruses to HBV suggests that bats might constitute ancestral sources of primate hepadnaviruses. Infection patterns in bats resembled human infection with HBV. After resurrection from bat tissues, pseudotyped viruses carrying surface proteins of one bat hepadnavirus could infect human liver cells. HBV vaccination is probably not protective against these viruses, but viral replication could be blocked by a reverse transcriptase inhibitor used as an anti-HBV drug in humans. The potential of bat hepadnaviruses to infect humans should be considered in programs aimed at eradicating HBV. The hepatitis B virus (HBV), family Hepadnaviridae, is one of most relevant human pathogens. HBV origins are enigmatic, and no zoonotic reservoirs are known. Here, we screened 3,080 specimens from 54 bat species representing 11 bat families for hepadnaviral DNA. Ten specimens (0.3%) from Panama and Gabon yielded unique hepadnaviruses in coancestral relation to HBV. Full genome sequencing allowed classification as three putative orthohepadnavirus species based on genome lengths (3,149–3,377 nt), presence of middle HBV surface and X-protein genes, and sequence distance criteria. Hepatic tropism in bats was shown by quantitative PCR and in situ hybridization. Infected livers showed histopathologic changes compatible with hepatitis. Human hepatocytes transfected with all three bat viruses cross-reacted with sera against the HBV core protein, concordant with the phylogenetic relatedness of these hepadnaviruses and HBV. One virus from Uroderma bilobatum, the tent-making bat, cross-reacted with monoclonal antibodies against the HBV antigenicity determining S domain. Up to 18.4% of bat sera contained antibodies against bat hepadnaviruses. Infectious clones were generated to study all three viruses in detail. Hepatitis D virus particles pseudotyped with surface proteins of U. bilobatum HBV, but neither of the other two viruses could infect primary human and Tupaia belangeri hepatocytes. Hepatocyte infection occurred through the human HBV receptor sodium taurocholate cotransporting polypeptide but could not be neutralized by sera from vaccinated humans. Antihepadnaviral treatment using an approved reverse transcriptase inhibitor blocked replication of all bat hepadnaviruses. Our data suggest that bats may have been ancestral sources of primate hepadnaviruses. The observed zoonotic potential might affect concepts aimed at eradicating HBV.


Biological Chemistry | 1999

Yeast Cells Allow High-Level Expression and Formation of Polyomavirus-Like Particles

Kestutis Sasnauskas; Odeta Buzaite; Frank Vogel; Burkhard Jandrig; Raimundas Razanskas; Juozas Staniulis; Siegfried Scherneck; Detlev H. Krüger; Rainer G. Ulrich

Abstract Polyomavirus-derived virus-like particles (VLPs) have been described as potential carriers for encapsidation of nucleic acids in gene therapy. Although VLPs can be generated in E. coli or insect cells, the yeast expression system should be advantageous as it is well established for the biotechnological generation of products for human use, especially because they are free of toxins hazardous for humans. We selected the yeast Saccharomyces cerevisiae for expression of the major capsid protein VP1 of a non-human polyomavirus, the hamster polyomavirus (HaPV). Two entire HaPV VP1- coding sequences, starting with the authentic and a second upstream ATG, respectively, were subcloned and expressed to high levels in Saccharomyces cerevisiae. The expressed VP1 assembled spontaneously into VLPs with a structure resembling that of the native HaPV capsid. Determination of the subcellular localization revealed a nuclear localization of some particles formed by the N-terminally extended VP1, whereas particles formed by the authentic VP1 were found mainly in the cytoplasmic compartment.


Journal of Virology | 2004

Differential Antiviral Response of Endothelial Cells after Infection with Pathogenic and Nonpathogenic Hantaviruses

Annette A. Kraus; Martin J. Raftery; Thomas Giese; Rainer G. Ulrich; Rainer Zawatzky; Stefan Hippenstiel; Norbert Suttorp; Detlev H. Krüger; Günther Schönrich

ABSTRACT Hantaviruses represent important human pathogens and can induce hemorrhagic fever with renal syndrome (HFRS), which is characterized by endothelial dysfunction. Both pathogenic and nonpathogenic hantaviruses replicate without causing any apparent cytopathic effect, suggesting that immunopathological mechanisms play an important role in pathogenesis. We compared the antiviral responses triggered by Hantaan virus (HTNV), a pathogenic hantavirus associated with HFRS, and Tula virus (TULV), a rather nonpathogenic hantavirus, in human umbilical vein endothelial cells (HUVECs). Both HTNV- and TULV-infected cells showed increased levels of molecules involved in antigen presentation. However, TULV-infected HUVECs upregulated HLA class I molecules more rapidly. Interestingly, HTNV clearly induced the production of beta interferon (IFN-β), whereas expression of this cytokine was barely detectable in the supernatant or in extracts from TULV-infected HUVECs. Nevertheless, the upregulation of HLA class I on both TULV- and HTNV-infected cells could be blocked by neutralizing anti-IFN-β antibodies. Most strikingly, the antiviral MxA protein, which interferes with hantavirus replication, was already induced 16 h after infection with TULV. In contrast, HTNV-infected HUVECs showed no expression of MxA until 48 h postinfection. In accordance with the kinetics of MxA expression, TULV replicated only inefficiently in HUVECs, whereas HTNV-infected cells produced high titers of virus particles that decreased after 48 h postinfection. Both hantavirus species, however, could replicate equally well in Vero E6 cells, which lack an IFN-induced MxA response. Thus, delayed induction of antiviral MxA in endothelial cells after infection with HTNV could allow viral dissemination and contribute to the pathogenesis leading to HFRS.

Collaboration


Dive into the Rainer G. Ulrich's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Martin H. Groschup

Friedrich Loeffler Institute

View shared research outputs
Top Co-Authors

Avatar

Jonas Schmidt-Chanasit

Bernhard Nocht Institute for Tropical Medicine

View shared research outputs
Top Co-Authors

Avatar

Reimar Johne

Federal Institute for Risk Assessment

View shared research outputs
Top Co-Authors

Avatar

Boris Klempa

Slovak Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge