Rainer Hillenbrand
Ikerbasque
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rainer Hillenbrand.
Nature | 2012
Jianing Chen; M. Badioli; Pablo Alonso-González; Sukosin Thongrattanasiri; Florian Huth; Johann Osmond; Marko Spasenović; Alba Centeno; Amaia Pesquera; Philippe Godignon; Amaia Zurutuza Elorza; Nicolas Camara; F. Javier García de Abajo; Rainer Hillenbrand
The ability to manipulate optical fields and the energy flow of light is central to modern information and communication technologies, as well as quantum information processing schemes. However, because photons do not possess charge, a way of controlling them efficiently by electrical means has so far proved elusive. A promising way to achieve electric control of light could be through plasmon polaritons—coupled excitations of photons and charge carriers—in graphene. In this two-dimensional sheet of carbon atoms, it is expected that plasmon polaritons and their associated optical fields can readily be tuned electrically by varying the graphene carrier density. Although evidence of optical graphene plasmon resonances has recently been obtained spectroscopically, no experiments so far have directly resolved propagating plasmons in real space. Here we launch and detect propagating optical plasmons in tapered graphene nanostructures using near-field scattering microscopy with infrared excitation light. We provide real-space images of plasmon fields, and find that the extracted plasmon wavelength is very short—more than 40 times smaller than the wavelength of illumination. We exploit this strong optical field confinement to turn a graphene nanostructure into a tunable resonant plasmonic cavity with extremely small mode volume. The cavity resonance is controlled in situ by gating the graphene, and in particular, complete switching on and off of the plasmon modes is demonstrated, thus paving the way towards graphene-based optical transistors. This successful alliance between nanoelectronics and nano-optics enables the development of active subwavelength-scale optics and a plethora of nano-optoelectronic devices and functionalities, such as tunable metamaterials, nanoscale optical processing, and strongly enhanced light–matter interactions for quantum devices and biosensing applications.
Nature | 2002
Rainer Hillenbrand; Thomas Taubner; Fritz Keilmann
Optical near fields exist close to any illuminated object. They account for interesting effects such as enhanced pinhole transmission or enhanced Raman scattering enabling single-molecule spectroscopy. Also, they enable high-resolution (below 10 nm) optical microscopy. The plasmon-enhanced near-field coupling between metallic nanostructures opens new ways of designing optical properties and of controlling light on the nanometre scale. Here we study the strong enhancement of optical near-field coupling in the infrared by lattice vibrations (phonons) of polar dielectrics. We combine infrared spectroscopy with a near-field microscope that provides a confined field to probe the local interaction with a SiC sample. The phonon resonance occurs at 920 cm-1. Within 20 cm-1 of the resonance, the near-field signal increases 200-fold; on resonance, the signal exceeds by 20 times the value obtained with a gold sample. We find that phonon-enhanced near-field coupling is extremely sensitive to chemical and structural composition of polar samples, permitting nanometre-scale analysis of semiconductors and minerals. The excellent physical and chemical stability of SiC in particular may allow the design of nanometre-scale optical circuits for high-temperature and high-power operation.
Nature Materials | 2015
Achim Woessner; Mark B. Lundeberg; Yuanda Gao; Alessandro Principi; Pablo Alonso-González; Matteo Carrega; Kenji Watanabe; Takashi Taniguchi; Giovanni Vignale; Marco Polini; James Hone; Rainer Hillenbrand
Graphene plasmons were predicted to possess simultaneous ultrastrong field confinement and very low damping, enabling new classes of devices for deep-subwavelength metamaterials, single-photon nonlinearities, extraordinarily strong light-matter interactions and nano-optoelectronic switches. Although all of these great prospects require low damping, thus far strong plasmon damping has been observed, with both impurity scattering and many-body effects in graphene proposed as possible explanations. With the advent of van der Waals heterostructures, new methods have been developed to integrate graphene with other atomically flat materials. In this Article we exploit near-field microscopy to image propagating plasmons in high-quality graphene encapsulated between two films of hexagonal boron nitride (h-BN). We determine the dispersion and plasmon damping in real space. We find unprecedentedly low plasmon damping combined with strong field confinement and confirm the high uniformity of this plasmonic medium. The main damping channels are attributed to intrinsic thermal phonons in the graphene and dielectric losses in the h-BN. The observation and in-depth understanding of low plasmon damping is the key to the development of graphene nanophotonic and nano-optoelectronic devices.
Philosophical transactions - Royal Society. Mathematical, physical and engineering sciences | 2004
Fritz Keilmann; Rainer Hillenbrand
We describe ultraresolution microscopy far beyond the classical Abbe diffraction limit of one half wavelength (λ/2), and also beyond the practical limit (ca. λ/10) of aperture–based scanning near–field optical microscopy (SNOM). The ‘apertureless’ SNOM discussed here uses light scattering from a sharp tip (hence scattering–type or s–SNOM) and has no λ–related resolution limit. Rather, its resolution is approximately equal to the radius a of the probing tip (for commercial tips, a<20 nm) so that 10 nm is obtained in the visible (λ/60). A resolution of λ/500 has been obtained in the mid–infrared at λ=10 μm. The advantage of infrared, terahertz and even microwave illumination is that specific excitations can be exploited to yield specific contrast, e.g. the molecular vibration offering a spectroscopic fingerprint to identify chemical composition. S–SNOM can routinely acquire simultaneous amplitude and phase images to obtain information on refractive and absorptive properties. Plasmon– or phonon–resonant materials can be highlighted by their particularly high near–field signal level. Furthermore, s–SNOM can map the characteristic optical eigenfields of small, optically resonant particles. Lastly, we describe theoretical modelling that explains and predicts s–SNOM contrast on the basis of the local dielectric function.
Nano Letters | 2008
Andreas J. Huber; Fritz Keilmann; Jesper Wittborn; Javier Aizpurua; Rainer Hillenbrand
We introduce ultraresolving terahertz (THz) near-field microscopy based on THz scattering at atomic force microscope tips. Nanoscale resolution is achieved by THz field confinement at the very tip apex to within 30 nm, which is in good agreement with full electro-dynamic calculations. Imaging semiconductor transistors, we provide first evidence of 40 nm (lambda/3000) spatial resolution at 2.54 THz (wavelength lambda=118 microm) and demonstrate the simultaneous THz recognition of materials and mobile carriers in a single nanodevice. Fundamentally important, we find that the mobile carrier contrast can be directly related to near-field excitation of THz-plasmons in the doped semiconductor regions. This opens the door to quantitative studies of local carrier concentration and mobility at the nanometer scale. The THz near-field response is extraordinary sensitive, providing contrast from less than 100 mobile electrons in the probed volume. Future improvements could allow for THz characterization of even single electrons or biomolecules.
Applied Physics Letters | 2006
Nenad Ocelic; Andreas J. Huber; Rainer Hillenbrand
The authors present a detection technique for scattering-type near-field optical microscopy capable of background interference elimination in the entire near-UV to far-IR spectral range. It simultaneously measures near-field optical signal amplitude and phase by interferometric detection of scattered light utilizing a phase-modulated reference wave. They compare its background suppression efficiency to other known methods and experimentally show that it provides a reliable near-field optical material contrast even in the case where both noninterferometric and homodyne interferometric detection methods fail.
Nano Letters | 2012
Florian Huth; Alexander A. Govyadinov; Sergiu Amarie; Wiwat Nuansing; Fritz Keilmann; Rainer Hillenbrand
We demonstrate Fourier transform infrared nanospectroscopy (nano-FTIR) based on a scattering-type scanning near-field optical microscope (s-SNOM) equipped with a coherent-continuum infrared light source. We show that the method can straightforwardly determine the infrared absorption spectrum of organic samples with a spatial resolution of 20 nm, corresponding to a probed volume as small as 10 zeptoliter (10(-20) L). Corroborated by theory, the nano-FTIR absorption spectra correlate well with conventional FTIR absorption spectra, as experimentally demonstrated with poly(methyl methacrylate) (PMMA) samples. Nano-FTIR can thus make use of standard infrared databases of molecular vibrations to identify organic materials in ultrasmall quantities and at ultrahigh spatial resolution. As an application example we demonstrate the identification of a nanoscale PDMS contamination on a PMMA sample.
Science | 2014
Pablo Alonso-González; Alexey Yu. Nikitin; Federico Golmar; Alba Centeno; Amaia Pesquera; Saül Vélez; Jianing Chen; Gabriele Navickaite; A. Zurutuza; Fèlix Casanova; Luis E. Hueso; Rainer Hillenbrand
A controlled launch for plasmons To create nanophotonic devices, engineers must combine large-scale optics with tiny nanoelectronics. Plasmons, the collective light-induced excitations of electrons at a metals surface, can bridge that difference in size scales. Alonso-Gonzalez et al. placed structured gold “antennas” on top of a graphene layer to launch and propagate plasmonic excitations into the graphene. By carefully designing the antennas, the researchers could engineer the wavefronts of the plasmons and control the direction of propagation. This approach illustrates a versatile approach for the development of nanophotonics. Science, this issue p. 1369 Structured gold antennas are used to launch plasmons into graphene, engineer their wavefronts, and control their propagation. Graphene plasmons promise unique possibilities for controlling light in nanoscale devices and for merging optics with electronics. We developed a versatile platform technology based on resonant optical antennas and conductivity patterns for launching and control of propagating graphene plasmons, an essential step for the development of graphene plasmonic circuits. We launched and focused infrared graphene plasmons with geometrically tailored antennas and observed how they refracted when passing through a two-dimensional conductivity pattern, here a prism-shaped bilayer. To that end, we directly mapped the graphene plasmon wavefronts by means of an imaging method that will be useful in testing future design concepts for nanoscale graphene plasmonic circuits and devices.
Applied Physics Letters | 2002
Rainer Hillenbrand; Fritz Keilmann
We report that three main constituents of nanosystems—metals, semiconductors, and dielectrics—can be categorically distinguished by their specific optical near-field contrast at 633 nm wavelength. The decisive property is the local dielectric constant as we show by calculations based on dipolar coupling theory. Experiments with Au/Si/PS(polystyrene) nanostructures using an apertureless scattering-type near-field optical microscope yield optical images at 10 nm resolution, with clear material contrast close to predicted levels.
Nature Materials | 2011
Florian Huth; Martin Schnell; Jesper Wittborn; Nenad Ocelic; Rainer Hillenbrand
Fourier-transform infrared (FTIR) spectroscopy is a widely used analytical tool for chemical identification of inorganic, organic and biomedical materials, as well as for exploring conduction phenomena. Because of the diffraction limit, however, conventional FTIR cannot be applied for nanoscale imaging. Here we demonstrate a novel FTIR system that allows for infrared-spectroscopic nanoimaging of dielectric properties (nano-FTIR). Based on superfocusing of thermal radiation with an infrared antenna, detection of the scattered light, and strong signal enhancement employing an asymmetric FTIR spectrometer, we improve the spatial resolution of conventional infrared spectroscopy by more than two orders of magnitude. By mapping a semiconductor device, we demonstrate spectroscopic identification of silicon oxides and quantification of the free-carrier concentration in doped Si regions with a spatial resolution better than 100 nm. We envisage nano-FTIR becoming a powerful tool for chemical identification of nanomaterials, as well as for quantitative and contact-free measurement of the local free-carrier concentration and mobility in doped nanostructures.