Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rainer Lenzen is active.

Publication


Featured researches published by Rainer Lenzen.


Nature | 2002

A star in a 15.2-year orbit around the supermassive black hole at the centre of the Milky Way

R. Schödel; T. Ott; R. Genzel; R. Hofmann; Matthew D. Lehnert; A. Eckart; N. Mouawad; T. Alexander; M. J. Reid; Rainer Lenzen; M. Hartung; Francois Lacombe; D. Rouan; E. Gendron; Gerard Rousset; Anne-Marie Lagrange; Wolfgang Brandner; Nancy Ageorges; C. Lidman; Alan F. M. Moorwood; Jason Spyromilio; N. Hubin; K. M. Menten

Many galaxies are thought to have supermassive black holes at their centres—more than a million times the mass of the Sun. Measurements of stellar velocities and the discovery of variable X-ray emission have provided strong evidence in favour of such a black hole at the centre of the Milky Way, but have hitherto been unable to rule out conclusively the presence of alternative concentrations of mass. Here we report ten years of high-resolution astrometric imaging that allows us to trace two-thirds of the orbit of the star currently closest to the compact radio source (and massive black-hole candidate) Sagittarius A*. The observations, which include both pericentre and apocentre passages, show that the star is on a bound, highly elliptical keplerian orbit around Sgr A*, with an orbital period of 15.2 years and a pericentre distance of only 17 light hours. The orbit with the best fit to the observations requires a central point mass of (3.7 ± 1.5) × 106 solar masses (M[circdot]). The data no longer allow for a central mass composed of a dense cluster of dark stellar objects or a ball of massive, degenerate fermions.


Astronomical Telescopes and Instrumentation | 2003

NAOS-CONICA first on sky results in a variety of observing modes

Rainer Lenzen; Markus Hartung; Wolfgang Brandner; Gert Finger; Norbert Hubin; Francois Lacombe; Anne-Marie Lagrange; Matthew D. Lehnert; Alan F. M. Moorwood; David Mouillet

The Adaptive Optics NIR Instrument NAOS-CONICA has been commissioned at the VLT (UT4) between November 2001 and March 2002. After summarizing the observational capabilities of this multimode instrument in combination with the powerful AO-system, we will present first on sky results of the instrumental performance for several non-direct imaging modes: High spatial resolution slit-spectroscopy in the optical and thermal NIR region has been tested. For compact sources below 2 arcsec extension, Wollaston prism polarimetry is used. For larger objects the linear polarization pattern can be analyzed by wire grids down to the diffraction limit. Coronographic masks are applied to optimize imaging and polarimetric capabilities. The cryogenic Fabry-Perot Interferometer in combination with an 8m-telescope AO-system is shown to be a powerful tool for imaging spectroscopy (3D-scans).


Astronomy and Astrophysics | 2004

Mid-infrared sizes of circumstellar disks around Herbig Ae/Be stars measured with MIDI on the VLTI

Christoph Leinert; R. van Boekel; L. B. F. M. Waters; O. Chesneau; Fabien Malbet; R. Köhler; W. Jaffe; Thorsten Ratzka; Anne Dutrey; Thomas Preibisch; U. Graser; Eric J. Bakker; G. Chagnon; W. D. Cotton; C. Dominik; Cornelis P. Dullemond; Annelie W. Glazenborg-Kluttig; Andreas Glindemann; T. Henning; Karl-Heinz Hofmann; J. de Jong; Rainer Lenzen; S. Ligori; B. Lopez; Jeff Meisner; S. Morel; Francesco Paresce; Jan-Willem Pel; Isabelle Percheron; G. Perrin

We present the first long baseline mid-infrared interferometric observations of the circumstellar disks surrounding Herbig Ae/Be stars. The observations were obtained using the mid-infrared interferometric instrument MIDI at the European Southern Observatory (ESO) Very Large Telescope Interferometer VLTI on Cerro Paranal. The 102 m baseline given by the telescopes UT1 and UT3 was employed, which provides a maximum full spatial resolution of 20 milli-arcsec (mas) at a wave- length of 10 µm. The interferometric signal was spectrally dispersed at a resolution of 30, giving spectrally resolved visibility information from 8 µm to 13.5 µm. We observed seven nearby Herbig Ae/Be stars and resolved all objects. The warm dust disk of HD 100546 could even be resolved in single-telescope imaging. Characteristic dimensions of the emitting regions at 10 µm are found to be from 1 AU to 10 AU. The 10 µm sizes of our sample stars correlate with the slope of the 10-25 µm infrared spectrum in the sense that the reddest objects are the largest ones. Such a correlation would be consistent with a different ge- ometry in terms of flaring or flat (self-shadowed) disks for sources with strong or moderate mid-infrared excess, respectively. We compare the observed spectrally resolved visibilities with predictions based on existing models of passive centrally irra- diated hydrostatic disks made to fit the SEDs of the observed stars. We find broad qualitative agreement of the spectral shape of visibilities corresponding to these models with our observations. Quantitatively, there are discrepancies that show the need for a next step in modelling of circumstellar disks, satisfying both the spatial constraints such as are now available from the MIDI observations and the flux constraints from the SEDs in a consistent way.


Nature | 2005

A dynamical calibration of the mass-luminosity relation at very low stellar masses and young ages

Laird M. Close; Rainer Lenzen; Jose Carlos Guirado; Eric L. Nielsen; Eric E. Mamajek; Wolfgang Brandner; Markus Hartung; Christopher E. Lidman; Beth A. Biller

Mass is the most fundamental parameter of a star, yet it is also one of the most difficult to measure directly. In general, astronomers estimate stellar masses by determining the luminosity and using the ‘mass–luminosity’ relationship, but this relationship has never been accurately calibrated for young, low-mass stars and brown dwarfs. Masses for these low-mass objects are therefore constrained only by theoretical models. A new high-contrast adaptive optics camera enabled the discovery of a young (50 million years) companion only 0.156 arcseconds (2.3 au) from the more luminous (> 120 times brighter) star AB Doradus A. Here we report a dynamical determination of the mass of the newly resolved low-mass companion AB Dor C, whose mass is 0.090 ± 0.005 solar masses. Given its measured 1–2-micrometre luminosity, we have found that the standard mass–luminosity relations overestimate the near-infrared luminosity of such objects by about a factor of ∼2.5 at young ages. The young, cool objects hitherto thought to be substellar in mass are therefore about twice as massive, which means that the frequency of brown dwarfs and planetary mass objects in young stellar clusters has been overestimated.


Astrophysics and Space Science | 2003

MIDI - The 10 mu m instrument on the VLTI

Christoph Leinert; U. Graser; Frank Przygodda; L. B. F. M. Waters; G. Perrin; W Jaffe; Beatriz Lopez; Eric J. Bakker; Arno Böhm; O. Chesneau; W. D. Cotton; S Damstra; Johannes de Jong; Aw Glazenborg-Kluting; Bernhard Grimm; H Hanenburg; W Laun; Rainer Lenzen; S Ligori; Richard J. Mathar; Jeffrey A. Meisner; S. Morel; W. Morr; Ulrich Neumann; Jw Pel; P Schuller; Rr Rohloff; Bringfried Stecklum; C Storz; O. von der Lühe

After more than five years of preparation, the mid-infrared interferometric instrument MIDI has been transported to Paranal where it will undergo testing and commissioning on theVery Large Telescope Interferometer VLTI from the end of 2002through large part of this year 2003. Thereafter it will be available as a user instrument to perform interferometric observations over the8 μm–13 μm wavelength range, with a spatial resolution of typically 20 milliarcsec, a spectral resolution of up to 250, and an anticipated point source sensitivity of N = 3–4 mag or 1–2.5 Jy for self –fringe tracking, which will be the only observing mode during the first months of operation. We describe the layout of the instrument, laboratory tests, and expected performance, both for broadband and spectrally resolved observing modes. We also briefly outline the planned guaranteed time observations.


Astrophysical Journal Supplement Series | 2007

An imaging survey for extrasolar planets around 45 close, young stars with the simultaneous differential imager at the very large telescope and MMT

Beth A. Biller; Laird M. Close; Elena Masciadri; Eric L. Nielsen; Rainer Lenzen; Wolfgang Brandner; Donald W. McCarthy; Markus Hartung; S. Kellner; Eric E. Mamajek; Thomas Henning; Douglas L. Miller; Matthew A. Kenworthy; Craig Kulesa

Wepresent theresultsof asurveyof 45young(P250Myr), close(P50pc) starswiththeSimultaneous Differential Imager (SDI) implemented at the VLT and the MMT for the direct detection of extrasolar planets. As part of the survey, we observed 54 objects, consisting of 45 close, young stars; two more distant ( 2 � which behaved consistently like a real object. From our survey null result,we can rule out (with 93% confidence) a model planet population where N(a) / constant out to a distance of 45 AU.


The Astrophysical Journal | 2011

BLACK HOLE MASS ESTIMATES BASED ON C IV ARE CONSISTENT WITH THOSE BASED ON THE BALMER LINES

Roberto J. Assef; K. D. Denney; C. S. Kochanek; Bradley M. Peterson; S. Kozłowski; N. Ageorges; Robert Scott Barrows; Peter Buschkamp; Matthias Dietrich; Emilio E. Falco; C. Feiz; Hans Gemperlein; Andre Germeroth; C. J. Grier; R. Hofmann; Marcus Juette; Rubab Khan; Mukremin Kilic; Volker Knierim; W. Laun; Reinhard Lederer; Michael Lehmitz; Rainer Lenzen; U. Mall; K. K. Madsen; H. Mandel; Paul Martini; S. Mathur; K. Mogren; P. Mueller

Using a sample of high-redshift lensed quasars from the CASTLES project with observed-frame ultraviolet or optical and near-infrared spectra, we have searched for possible biases between supermassive black hole (BH) mass estimates based on the C IV, Hα, and Hβ broad emission lines. Our sample is based upon that of Greene, Peng, & Ludwig, expanded with new near-IR spectroscopic observations, consistently analyzed high signal-to-noise ratio (S/N) optical spectra, and consistent continuum luminosity estimates at 5100 A. We find that BH mass estimates based on the full width at half-maximum (FWHM) of C IV show a systematic offset with respect to those obtained from the line dispersion, σ_l , of the same emission line, but not with those obtained from the FWHM of Hα and Hβ. The magnitude of the offset depends on the treatment of the He II and Fe II emission blended with C IV, but there is little scatter for any fixed measurement prescription. While we otherwise find no systematic offsets between C IV and Balmer line mass estimates, we do find that the residuals between them are strongly correlated with the ratio of the UV and optical continuum luminosities. This means that much of the dispersion in previous comparisons of C IV and Hβ BH mass estimates are due to the continuum luminosities rather than to any properties of the lines. Removing this dependency reduces the scatter between the UV- and optical-based BH mass estimates by a factor of approximately two, from roughly 0.35 to 0.18 dex. The dispersion is smallest when comparing the C IV σ l mass estimate, after removing the offset from the FWHM estimates, and either Balmer line mass estimate. The correlation with the continuum slope is likely due to a combination of reddening, host contamination, and object-dependent SED shapes. When we add additional heterogeneous measurements from the literature, the results are unchanged. Moreover, in a trial observation of a remaining outlier, the origin of the deviation is clearly due to unrecognized absorption in a low S/N spectrum. This not only highlights the importance of the quality of the observations, but also raises the question whether cases like this one are common in the literature, further biasing comparisons between C IV and other broad emission lines.


The Astrophysical Journal | 2005

The Arches Cluster: Evidence for a Truncated Mass Function?

Andrea Stolte; Wolfgang Brandner; Eva K. Grebel; Rainer Lenzen; Anne-Marie Lagrange

We have analyzed high-resolution, adaptive optics HK observations of the Arches cluster obtained with NAOS-CONICA. With a spatial resolution of 84 mas, the cluster center is uniquely resolved. From these data, the present-day mass function (MF) of the Arches cluster is derived down to ~4 M☉. The integrated MF and the core and second-annulus MFs are consistent with a turnover at 6-7 M☉. This turnover indicates severe depletion of intermediate- and low-mass stars in the Arches cluster, possibly caused by its evolution in the Galactic center environment. The Arches MF represents the first resolved observation of a starburst cluster exhibiting a low-mass-truncated MF. This finding has severe implications for stellar population synthesis modeling of extragalactic starbursts, the derivation of integrated properties such as the total mass of star clusters in dense environments, the survival of low-mass remnants from starburst populations, and chemical enrichment during starburst phases.


Astronomy and Astrophysics | 2003

Direct measurement of the size and shape of the present-day stellar wind of eta Carinae

R. van Boekel; Pierre Kervella; M. Schöller; T. M. Herbst; Wolfgang Brandner; A. de Koter; L. B. F. M. Waters; D. J. Hillier; Francesco Paresce; Rainer Lenzen; Anne-Marie Lagrange

We present new high angular resolution observations at near-IR wavelengths of the core of the Luminous Blue Variable Carinae, using NAOS-CONICA at the VLT and VINCI at the VLT Interferometer (VLTI). The latter observations provide spatial information on a scale of 5 milli-arcsec or 11 AU at the distance of Carinae. The present-day stellar wind of Carinae is resolved on a scale of several stellar radii. Assuming spherical symmetry, we find a mass loss rate of 1:610 3 M/yr and a wind clumping factor of 0.26. The VLTI data taken at a baseline of 24 m show that the object is elongated with a de- projected axis ratio of approximately 1.5; the major axis is aligned with that of the large bi-polar nebula that was ejected in the 19th century. The most likely explanation for this observation is a counter-intuitive model in which stellar rotation near the critical velocity causes enhanced mass loss along the rotation axis. This results from the large temperature dierence between pole and equator in rapidly rotating stars. Carinae must rotate in excess of 90 percent of its critical velocity to account for the observed shape. The large outburst may have been shaped in a similar way. Our observations provide strong support for the existence of a theoretically predicted rotational instability, known as the limit.


Astronomical Telescopes and Instrumentation | 1998

CONICA: the high-resolution near-infrared camera for the ESO VLT

Rainer Lenzen; R. Hofmann; Peter Bizenberger; Andreas Tusche

A high resolution near IR camera (CONICA) for the firs VLT unit is under development, which will provide diffraction limited spatial resolution being combined with the adaptive optics system NAOS. CONICA serves as a multi-mode instrument for the wavelength region between 1.0 and 5.0 micrometers , offering broad band, narrow band or Fabry Perot direct imaging capabilities, polarimetric modes using Wollaston prism or wire grid analyzers and long slit spectroscopy up to a spectral resolution of about 1000 per two pixel. We presented a first concept of CONICA in 1995. In the mean time, large parts of the instrument have been manufactured, the cryostat and the adapter have been finished and first cryogenic test have been performed. This paper describes the actual design and status of development of CONICA focusing on those aspects which have not been described in detail before or the design of which have been changed in the mean time.

Collaboration


Dive into the Rainer Lenzen's collaboration.

Researchain Logo
Decentralizing Knowledge