Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rainer Viktor Haberberger is active.

Publication


Featured researches published by Rainer Viktor Haberberger.


Naunyn-schmiedebergs Archives of Pharmacology | 2009

Suitability of muscarinic acetylcholine receptor antibodies for immunohistochemistry evaluated on tissue sections of receptor gene-deficient mice

Gitte Jositsch; Tamara Papadakis; Rainer Viktor Haberberger; Miriam Wolff; Jürgen Wess; Wolfgang Kummer

Acetylcholine (ACh) is a major regulator of visceral function exerting pharmacologically relevant effects upon smooth muscle tone and epithelial function via five types of muscarinic receptors (M1R-M5R). In this paper, we assessed the specificity of muscarinic receptor (MR) antibodies in immunohistochemical labelling on tissue sections by analysing specimens from wild-type and respective gene-deficient mice. Of 24 antibodies evaluated in this study, 16 were tested at 18 different conditions each, and eight of them in 21 different protocols, resulting in a total number of 456 antibody/protocol combinations. Each of them was tested at four antibody dilutions at minimum, so that finally, at least 1,824 conditions were evaluated. For each of them, dorsal root ganglia, urinary bladder and cross-sections through all thoracic viscera were investigated. In all cases where the antigen was available, at least one incubation condition was identified in which only select cell types were immunolabelled in the positive control but remained unlabelled in the pre-absorption control. With two exceptions (M2R antibodies), however, all antibodies produced identical immunohistochemical labelling patterns in tissues taken from corresponding gene-deficient mice even when the pre-absorption control in wild-type mice suggested specificity. Hence, the present data demonstrate the unpleasant fact that reliable immunohistochemical localisation of MR subtypes with antibodies is the exception rather than the rule. Immunohistochemical detection of MR subtype localisation in tissue sections of peripheral organs is limited to the M2R subtype utilising the most commonly used methodological approaches.


Circulation Research | 2003

Circulating Vascular Progenitor Cells Do Not Contribute to Compensatory Lung Growth

Robert Voswinckel; Tibor Ziegelhoeffer; Matthias Heil; Sawa Kostin; Georg Breier; Tanja Mehling; Rainer Viktor Haberberger; Matthias Clauss; Andreas Gaumann; Wolfgang Schaper; Werner Seeger

Abstract— The biological principles that underlie the induction and process of alveolization in the lung as well as the maintenance of the complex lung tissue structure are one of the major obstacles in pulmonary medicine today. Bone marrow–derived cells have been shown to participate in angiogenesis, vascular repair, and remodeling of various organs. We addressed this phenomenon in the lung vasculature of mice in a model of regenerative lung growth. C57BL/6 mice were transplanted with bone marrow from one of three different reporter gene–transgenic strains. flk-1+/lacZ mice, tie-2/lacZ transgenic mice (both exhibiting endothelial cell–specific reporter gene expression), and ubiquitously enhanced green fluorescent protein (eGFP)-expressing mice served as marrow donors. After hematopoietic recovery, compensatory lung growth was induced by unilateral pneumonectomy and led to complete restoration of initial lung volume and surface area. The lungs were consecutively investigated for bone marrow–derived vascular cells by lacZ staining and immunohistochemistry for phenotype identification of vascular cells. lacZ- or eGFP-expressing bone marrow–derived endothelial cells could not be found in microvascular regions of alveolar septa. Single eGFP-positive endothelial cells were detected in pulmonary arteries at very low frequencies, whereas no eGFP-positive vascular smooth muscle cells were observed. In conclusion, we demonstrate in a model of lung growth and alveolization in adult mice the absence of significant bone marrow–derived progenitor cell contribution to the concomitant vascular growth and remodeling processes.


PLOS ONE | 2012

ProBDNF Collapses Neurite Outgrowth of Primary Neurons by Activating RhoA

Ying Sun; Yoon Lim; Fang Li; Shen Liu; Jian-Jun Lu; Rainer Viktor Haberberger; Jin-Hua Zhong; Xin-Fu Zhou

Background Neurons extend their dendrites and axons to build functional neural circuits, which are regulated by both positive and negative signals during development. Brain-derived neurotrophic factor (BDNF) is a positive regulator for neurite outgrowth and neuronal survival but the functions of its precursor (proBDNF) are less characterized. Methodology/Principal Findings Here we show that proBDNF collapses neurite outgrowth in murine dorsal root ganglion (DRG) neurons and cortical neurons by activating RhoA via the p75 neurotrophin receptor (p75NTR). We demonstrated that the receptor proteins for proBDNF, p75NTR and sortilin, were highly expressed in cultured DRG or cortical neurons. ProBDNF caused a dramatic neurite collapse in a dose-dependent manner and this effect was about 500 fold more potent than myelin-associated glycoprotein. Neutralization of endogenous proBDNF by using antibodies enhanced neurite outgrowth in vitro and in vivo, but this effect was lost in p75NTR−/− mice. The neurite outgrowth of cortical neurons from p75NTR deficient (p75NTR−/−) mice was insensitive to proBDNF. There was a time-dependent reduction of length and number of filopodia in response to proBDNF which was accompanied with a polarized RhoA activation in growth cones. Moreover, proBDNF treatment of cortical neurons resulted in a time-dependent activation of RhoA but not Cdc42 and the effect was absent in p75NTR−/− neurons. Rho kinase (ROCK) and the collapsin response mediator protein-2 (CRMP-2) were also involved in the proBDNF action. Conclusions proBDNF has an opposing role in neurite outgrowth to that of mature BDNF. Our observations suggest that proBDNF collapses neurites outgrowth and filopodial growth cones by activating RhoA through the p75NTR signaling pathway.


Autonomic Neuroscience: Basic and Clinical | 2004

Nicotinic acetylcholine receptor subtypes in nociceptive dorsal root ganglion neurons of the adult rat

Rainer Viktor Haberberger; Nadia Bernardini; Michaela Kress; Petra Hartmann; Katrin S. Lips; Wolfgang Kummer

Stimulation of nicotinic acetylcholine receptors (nAChR) excites peripheral sensory nerve fibres, but also exert antinociceptive effects. The differences in these nAChR-mediated effects could be related to the expression of different nAChR subtypes located on nociceptive neurons. In the present study, we focused on the recently described alpha 10-nAChR subunit, and on alpha 4 and alpha 7 subunits, which are the most abundant subunits in the central nervous system. In nociceptive neurons from thoracic and lumbar dorsal root ganglia (DRG), nAChR subunits were found at transcriptional (RT-PCR), translational (immunohistochemistry) and functional levels. Cultured DRG neurons express mRNA for the subunits alpha 2-7 and alpha 10. The alpha-subunit proteins 4, 7 and 10 were colocalised in virtually all nociceptive neurons that were identified by immunoreactivity for the vanilloid receptor TRPV-1. These findings were corroborated by current recordings and calcium measurements, which revealed excitatory inward currents and calcium responses in capsaicin sensitive neurons.


Respiratory Research | 2006

Role of acetylcholine and polyspecific cation transporters in serotonin-induced bronchoconstriction in the mouse

Wolfgang Kummer; Silke Wiegand; Sibel Akinci; Ignatz Wessler; Alfred H. Schinkel; Jürgen Wess; Hermann Koepsell; Rainer Viktor Haberberger; Katrin S. Lips

BackgroundIt has been proposed that serotonin (5-HT)-mediated constriction of the murine trachea is largely dependent on acetylcholine (ACh) released from the epithelium. We recently demonstrated that ACh can be released from non-neuronal cells by corticosteroid-sensitive polyspecific organic cation transporters (OCTs), which are also expressed by airway epithelial cells. Hence, the hypothesis emerged that 5-HT evokes bronchoconstriction by inducing release of ACh from epithelial cells via OCTs.MethodsWe tested this hypothesis by analysing bronchoconstriction in precision-cut murine lung slices using OCT and muscarinic ACh receptor knockout mouse strains. Epithelial ACh content was measured by HPLC, and the tissue distribution of OCT isoforms was determined by immunohistochemistry.ResultsEpithelial ACh content was significantly higher in OCT1/2 double-knockout mice (42 ± 10 % of the content of the epithelium-denuded trachea, n = 9) than in wild-type mice (16.8 ± 3.6 %, n = 11). In wild-type mice, 5-HT (1 μM) caused a bronchoconstriction that slightly exceeded that evoked by muscarine (1 μM) in intact bronchi but amounted to only 66% of the response to muscarine after epithelium removal. 5-HT-induced bronchoconstriction was undiminished in M2/M3 muscarinic ACh receptor double-knockout mice which were entirely unresponsive to muscarine. Corticosterone (1 μM) significantly reduced 5-HT-induced bronchoconstriction in wild-type and OCT1/2 double-knockout mice, but not in OCT3 knockout mice. This effect persisted after removal of the bronchial epithelium. Immunohistochemistry localized OCT3 to the bronchial smooth muscle.ConclusionThe doubling of airway epithelial ACh content in OCT1/2-/- mice is consistent with the concept that OCT1 and/or 2 mediate ACh release from the respiratory epithelium. This effect, however, does not contribute to 5-HT-induced constriction of murine intrapulmonary bronchi. Instead, this activity involves 1) a non-cholinergic epithelium-dependent component, and 2) direct stimulation of bronchial smooth muscle cells, a response which is partly sensitive to acutely administered corticosterone acting on OCT3. These data provide new insights into the mechanisms involved in 5-HT-induced bronchoconstriction, including novel information about non-genomic, acute effects of corticosteroids on bronchoconstriction.


Journal of Histochemistry and Cytochemistry | 2003

Expression of the high-affinity choline transporter CHT1 in rat and human arteries.

Katrin S. Lips; Uwe Pfeil; K Reiners; Christoph Rimasch; Klaus Kuchelmeister; Ruediger C. Braun-Dullaeus; Rainer Viktor Haberberger; Rupert Schmidt; Wolfgang Kummer

The arterial vascular wall contains a non-neuronal intrinsic cholinergic system. The rate-limiting step in acetylcholine (ACh) synthesis is choline uptake. A high-affinity choline transporter, CHT1, has recently been cloned from neural tissue and has been identified in epithelial cholinergic cells. Here we investigated its presence in rat and human arteries and in primary cell cultures of rat vascular cells (endothelial cells, smooth muscle cells, fibro-blasts). CHT1-mRNA was detected in the arterial wall and in all isolated cell types by RT-PCR using five different CHT1-specific primer pairs. Antisera raised against amino acids 29–40 of the rat sequence labeled a single band (50 kD) in Western blots of rat aorta, and an additional higher molecular weight band appeared in the hippocampus. Immunohistochemistry demonstrated CHT1 immunoreactivity in endothelial and smooth muscle cells in situ and in all cultured cell types. A high-affinity [3H]-choline uptake mechanism sharing characteristics with neuronal high-affinity choline uptake, i.e., sensitivity to hemicholinium-3 and dependence on sodium, was demonstrated in rat thoracic aortic segments by microimager autoradiography. Expression of the high-affinity choline transporter CHT1 is a novel component of the intrinsic non-neuronal cholinergic system of the arterial vascular wall, predominantly in the intimal and medial layers.


Cell and Tissue Research | 2002

Localisation of the high-affinity choline transporter-1 in the rat skeletal motor unit

Katrin S. Lips; Uwe Pfeil; Rainer Viktor Haberberger; Wolfgang Kummer

Abstract. The rate-limiting step in neuronal acetylcholine (ACh) synthesis is the uptake of choline via a high-affinity transporter. We have generated antisera against the recently identified transporter CHT1 to investigate its distribution in rat motor neurons and skeletal muscle and have used these antisera in combination with (1) antisera against the vesicular acetylcholine transporter (VAChT) to identify cholinergic synapses and (2) Alexa-488-labelled α-bungarotoxin to identify motor endplates. In the motor unit, immunohistochemistry and RT-PCR have demonstrated that CHT1 is restricted to motoneurons and absent from the non-neuronal ACh-synthesizing elements, e.g. skeletal muscle fibres. In addition, CHT1 is also present in parasympathetic neurons of the tongue, as evidenced by immunohistochemistry and RT-PCR. CHT1 immunoreativity is principally found at all segments (perikaryon, dendrites, axon) of the motoneuron but is enriched at neuro-neuronal and neuro-muscular synapses. This preferential localisation matches well with its anticipated pivotal role in synaptic transmitter recycling and synthesis.


European Respiratory Journal | 2009

Muscarinic receptor subtypes in cilia-driven transport and airway epithelial development

Maike K. Klein; Rainer Viktor Haberberger; Petra Hartmann; Petra Faulhammer; Katrin S. Lips; Benjamin Krain; Jürgen Wess; Wolfgang Kummer; Peter König

Ciliary beating of airway epithelial cells drives the removal of mucus and particles from the airways. Mucociliary transport and possibly airway epithelial development are governed by muscarinic acetylcholine receptors but the precise roles of the subtypes involved are unknown. This issue was addressed by determining cilia-driven particle transport, ciliary beat frequency, and the composition and ultrastructural morphology of the tracheal epithelium in M1–M5 muscarinic receptor gene-deficient mice. Knockout of M3 muscarinic receptors prevented an increase in particle transport speed and ciliary beat frequency in response to muscarine. Furthermore, the ATP response after application of muscarine was blunted. Pretreatment with atropine before application of muscarine restored the response to ATP. Additional knockout of the M2 receptor in these mice partially restored the muscarine effect, most likely through the M1 receptor, and normalised the ATP response. M1, M4 and M5 receptor-deficient mice exhibited normal responses to muscarine. None of the investigated mutant mouse strains had any impairment of epithelial cellular structure or composition. In conclusion, M3 receptors stimulate whereas M2 receptors inhibit cilia-driven particle transport. The M1 receptor increases cilia-driven particle transport if the M3 and M2 receptors are missing. None of the receptors is necessary for epithelial development.


Peptides | 2002

Expression and distribution of calcitonin receptor-like receptor in human hairy skin.

Stefanie Hagner; Rainer Viktor Haberberger; D Overkamp; R Hoffmann; Karlheinz Voigt; Gerard P. McGregor

Calcitonin gene-related peptide and adrenomedullin exert potent effects in skin but their cellular targets are unknown. This study aimed to identify the cellular location of calcitonin receptor-like receptor (CRLR) which is pharmacologically identical to CGRP receptor-1, a putative molecular target of CGRP and adrenomedullin. RT-PCR analysis of human hairy skin revealed the presence of CRLR mRNA and immunohistochemical analysis, employing a previously characterized polyclonal antibody raised to CRLR, provided novel evidence of the cellular distribution of CRLR. Extensive and specific CRLR-immunostaining was detected in arteriolar smooth muscle and venular endothelium and is consistent with CGRPs putative role in neurogenic inflammation. Novel targets for CGRP and/or adrenomedullin were identified, including capillary endothelium, hair follicles and sweat glands.


Journal of Molecular Neuroscience | 2006

Coexpression and spatial association of nicotinic acetylcholine receptor subunits α7 and α10 in rat sympathetic neurons

Katrin S. Lips; Peter König; Katrin Schätzle; Uwe Pfeil; Gabriela Krasteva; Markus Spies; Rainer Viktor Haberberger; Sergei A. Grando; Wolfgang Kummer

Fast excitatory synaptic transmission in sympathetic ganglia is mediated by nicotinic acetylcholine receptors (nAChRs). Although it is known that the nAChR alpha7-subunit occurs in sympathetic ganglia, the expression of the recently cloned subunit alpha10 (Elgoyhen et al., 2001; Lustig et al., 2001; Sgard et al., 2002) has not been analyzed. Until now, functional receptors containing alpha10-subunits have been found only in combination with alpha9-subunits (Elgoyhen et al., 2001; Lustig et al., 2001; Sgard et al., 2002). The alpha9-subunit exhibits a restricted expression pattern, whereas the alpha10-subunit is expressed more widely. This broad distribution resembles more closely that known for subunit alpha7 than for subunit alpha9. On this background, we investigated the distribution of nAChR subunits alpha7, alpha9, and alpha10 in rat sympathetic ganglia and studied a possible interaction between subunit alpha7 and potential partners by double-labeling immunofluorescence and fluorescence resonance energy transfer (FRET) (Kam et al., 1995; Jares-Erijman and Jovin, 2003).

Collaboration


Dive into the Rainer Viktor Haberberger's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Uwe Pfeil

University of Giessen

View shared research outputs
Top Co-Authors

Avatar

Stuart M. Pitson

University of South Australia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jürgen Wess

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge