Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rainer von Sachs is active.

Publication


Featured researches published by Rainer von Sachs.


Journal of the American Statistical Association | 2001

Automatic statistical analysis of bivariate nonstationary time series

Hernando Ombao; Jonathan Raz; Rainer von Sachs; Beth A Malow

We propose a new method for analyzing bivariate nonstationary time series. The proposed method is a statistical procedure that automatically segments the time series into approximately stationary blocks and selects the span to be used to obtain the smoothed estimates of the time-varying spectra and coherence. It is based on the smooth localized complex exponential (SLEX) transform, which forms a library of orthogonal complex-valued transforms that are simultaneously localized in time and frequency. We show that the smoothed SLEX periodograms are consistent estimators, report simulation results, and apply the method to a two-channel electroencephalogram dataset recorded during an epileptic seizure.


Journal of the American Statistical Association | 2005

SLEX Analysis of Multivariate Nonstationary Time Series

Hernando Ombao; Rainer von Sachs; Wensheng Guo

We develop a procedure for analyzing multivariate nonstationary time series using the SLEX library (smooth localized complex exponentials), which is a collection of bases, each basis consisting of waveforms that are orthogonal and time-localized versions of the Fourier complex exponentials. Under the SLEX framework, we build a family of multivariate models that can explicitly characterize the time-varying spectral and coherence properties. Every model has a spectral representation in terms of a unique SLEX basis. Before selecting a model, we first decompose the multivariate time series into nonstationary components with uncorrelated (nonredundant) spectral information. The best SLEX model is selected using the penalized log energy criterion, which we derive in this article to be the Kullback–Leibler distance between a model and the SLEX principal components of the multivariate time series. The model selection criterion takes into account all of the pairwise cross-correlation simultaneously in the multivariate time series. The proposed SLEX analysis gives results that are easy to interpret, because it is an automatic time-dependent generalization of the classical Fourier analysis of stationary time series. Moreover, the SLEX method uses computationally efficient algorithms and hence is able to provide a systematic framework for extracting spectral features from a massive dataset. We illustrate the SLEX analysis with an application to a multichannel brain wave dataset recorded during an epileptic seizure.


Journal of Time Series Analysis | 2000

A wavelet-based test for stationarity

Rainer von Sachs; Michael H. Neumann

We develop a test for stationarity of a time series against the alternative of a time-changing covariance structure. Using localized versions of the periodogram, we obtain empirical versions of a reasonable notion of a time-varying spectral density. Coefficients w.r.t. a Haar wavelet series expansion of such a time-varying periodogram are a possible indicator whether there is some deviation from covariance stationarity. We propose a test based on the limit distribution of these empirical coefficients.


Annals of the Institute of Statistical Mathematics | 2002

The SLEX Model of a Non-Stationary Random Process

Hernando Ombao; Jonathan Raz; Rainer von Sachs; Wensheng Guo

We propose a new model for non-stationary random processes to represent time series with a time-varying spectral structure. Our SLEX model can be considered as a discrete time-dependent Cramér spectral representation. It is based on the so-called Smooth Localized complex EXponential basis functions which are orthogonal and localized in both time and frequency domains. Our model delivers a finite sample size representation of a SLEX process having a SLEX spectrum which is piecewise constant over time segments. In addition, we embed it into a sequence of models with a limit spectrum, a smoothly in time varying “evolutionary” spectrum. Hence, we develop the SLEX model parallel to the Dahlhaus (1997, Ann. Statist., 25, 1–37) model of local stationarity, and we show that the two models are asymptotically mean square equivalent. Moreover, to define both the growing complexity of our model sequence and the regularity of the SLEX spectrum we use a wavelet expansion of the spectrum over time. Finally, we develop theory on how to estimate the spectral quantities, and we briefly discuss how to form inference based on resampling (bootstrapping) made possible by the special structure of the SLEX model which allows for simple synthesis of non-stationary processes.


Archive | 1995

Wavelet Thresholding : Beyond the Gaussian I.I.D. Situation

Michael H. Neumann; Rainer von Sachs

With this article we first like to a give a brief review on wavelet thresholding methods in non-Gaussian and non-i.i.d. situations, respectively. Many of these applications are based onGaussian approximations of the empirical coefficients. For regression and density estimation with independent observations, we establish joint asymptotic normality of the empirical coefficients by means of strong approximations. Then we describe how one can prove asymptotic normality under mixing conditions on the observations by cumulant techniques.


Annals of Statistics | 2008

LOCALLY ADAPTIVE ESTIMATION OF EVOLUTIONARY WAVELET SPECTRA

Sébastien Van Bellegem; Rainer von Sachs

We introduce a wavelet-based model of local stationarity. This model enlarges the class of locally stationary wavelet processes and contains processes whose spectral density function may change very suddenly in time. A notion of time-varying wavelet spectrum is uniquely defined as a wavelet-type transform of the autocovariance function with respect to so-called autocorrelation wavelets. This leads to a natural representation of the autocovariance which is localized on scales. We propose a pointwise adaptive estimator of the time-varying spectrum. The behavior of the estimator studied in homogeneous and inhomogeneous regions of the wavelet spectrum.


Journal of the American Statistical Association | 2003

Smoothing Spline ANOVA for Time-Dependent Spectral Analysis

Wensheng Guo; Ming Dai; Hernando Ombao; Rainer von Sachs

In this article we propose a smoothing spline ANOVA model (SS-ANOVA) to estimate and to make inference on the time-varying log-spectrum of a locally stationary process. The time-varying spectrum is assumed to be smooth in both time and frequency. This assumption essentially turns a time-frequency spectral estimation problem into a 2-dimensional surface estimation problem. A smooth localized complex exponential (SLEX) basis is used to calculate the initial periodograms, and a SS-ANOVA is fitted to the log-periodograms. This approach allows the time and frequency domains to be modeled in a unified approach and jointly estimated. Inference procedures, such as confidence intervals, and hypothesis tests proposed for the SS-ANOVA can be adopted for the time-varying spectrum. Because of the smoothness assumption of the underlying spectrum, once we have the estimates on a time-frequency grid, we can calculate the estimate at any given time and frequency. This leads to a high computational efficiency, because for large datasets we need only estimate the initial raw periodograms at a much coarser grid. We study a penalized least squares estimator and a penalized Whittle likelihood estimator. The penalized Whittle likelihood estimator has smaller mean squared errors, whereas inference based on the penalized least squares method can adopt existing results. We present simulation results and apply our method to electroencephalogram data recorded during an epileptic seizure.


Econometric Theory | 2011

Locally Stationary Factor Models: Identification And Nonparametric Estimation

Giovanni Motta; Christian M. Hafner; Rainer von Sachs

In this paper we propose a new approximate factor model for large cross-section and time dimensions. Factor loadings are assumed to be smooth functions of time, which allows considering the model as locally stationary while permitting empirically observed time-varying second moments. Factor loadings are estimated by the eigenvectors of a nonparametrically estimated covariance matrix. As is well known in the stationary case, this principal components estimator is consistent in approximate factor models if the eigenvalues of the noise covariance matrix are bounded. To show that this carries over to our locally stationary factor model is the main objective of our paper. Under simultaneous asymptotics (cross-section and time dimension go to infinity simultaneously), we give conditions for consistency of our estimators. A simulation study illustrates the performance of these estimators.


Signal Processing | 2006

Second-generation wavelet denoising methods for irregularly spaced data in two dimensions

Véronique Delouille; Maarten Jansen; Rainer von Sachs

This paper discusses bivariate scattered data denoising. The proposed method uses second-generation wavelets constructed with the lifting scheme. Starting from a simple initial transform, we propose predictor operators based on a stabilized bivariate generalization of the Lagrange interpolating polynomial. These predictors are meant to provide a smooth reconstruction. Next, we include an update step which helps to reduce the correlation amongst the detail coefficients, and hence stabilizes the final estimator. We use a Bayesian thresholding algorithm to denoise the empirical coefficients, and we show the performance of the resulting estimator through a simulation study.


Journal of Computational and Graphical Statistics | 2009

A multiscale approach for statistical characterization of functional images

Anestis Antoniadis; Jérémie Bigot; Rainer von Sachs

Increasingly, scientific studies yield functional image data, in which the observed data consist of sets of curves recorded on the pixels of the image. Examples include temporal brain response intensities measured by fMRI and NMR frequency spectra measured at each pixel. This article presents a new methodology for improving the characterization of pixels in functional imaging, formulated as a spatial curve clustering problem. Our method operates on curves as a unit. It is nonparametric and involves multiple stages: (i) wavelet thresholding, aggregation, and Neyman truncation to effectively reduce dimensionality; (ii) clustering based on an extended EM algorithm; and (iii) multiscale penalized dyadic partitioning to create a spatial segmentation. We motivate the different stages with theoretical considerations and arguments, and illustrate the overall procedure on simulated and real datasets. Our method appears to offer substantial improvements over monoscale pixel-wise methods. An Appendix which gives some theoretical justifications of the methodology, computer code, documentation and dataset are available in the online supplements.

Collaboration


Dive into the Rainer von Sachs's collaboration.

Top Co-Authors

Avatar

Hernando Ombao

University of California

View shared research outputs
Top Co-Authors

Avatar

Catherine Timmermans

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Sébastien Van Bellegem

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wensheng Guo

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Jonathan Raz

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hilmar Böhm

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Jean-Marc Freyermuth

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge