Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Raissa M. D'Souza is active.

Publication


Featured researches published by Raissa M. D'Souza.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Suppressing cascades of load in interdependent networks

Charles D. Brummitt; Raissa M. D'Souza; Elizabeth Leicht

Understanding how interdependence among systems affects cascading behaviors is increasingly important across many fields of science and engineering. Inspired by cascades of load shedding in coupled electric grids and other infrastructure, we study the Bak–Tang–Wiesenfeld sandpile model on modular random graphs and on graphs based on actual, interdependent power grids. Starting from two isolated networks, adding some connectivity between them is beneficial, for it suppresses the largest cascades in each system. Too much interconnectivity, however, becomes detrimental for two reasons. First, interconnections open pathways for neighboring networks to inflict large cascades. Second, as in real infrastructure, new interconnections increase capacity and total possible load, which fuels even larger cascades. Using a multitype branching process and simulations we show these effects and estimate the optimal level of interconnectivity that balances their trade-offs. Such equilibria could allow, for example, power grid owners to minimize the largest cascades in their grid. We also show that asymmetric capacity among interdependent networks affects the optimal connectivity that each prefers and may lead to an arms race for greater capacity. Our multitype branching process framework provides building blocks for better prediction of cascading processes on modular random graphs and on multitype networks in general.


Science | 2009

Explosive Percolation in Random Networks

Dimitris Achlioptas; Raissa M. D'Souza; Joel Spencer

Networks in which the formation of connections is governed by a random process often undergo a percolation transition, wherein around a critical point, the addition of a small number of connections causes a sizable fraction of the network to suddenly become linked together. Typically such transitions are continuous, so that the percentage of the network linked together tends to zero right above the transition point. Whether percolation transitions could be discontinuous has been an open question. Here, we show that incorporating a limited amount of choice in the classic Erdös-Rényi network formation model causes its percolation transition to become discontinuous.


Nature Communications | 2014

Target control of complex networks

Jianxi Gao; Yang-Yu Liu; Raissa M. D'Souza; Albert-László Barabási

Controlling large natural and technological networks is an outstanding challenge. It is typically neither feasible nor necessary to control the entire network, prompting us to explore target control: the efficient control of a preselected subset of nodes. We show that the structural controllability approach used for full control overestimates the minimum number of driver nodes needed for target control. Here we develop an alternate ‘k-walk’ theory for directed tree networks, and we rigorously prove that one node can control a set of target nodes if the path length to each target node is unique. For more general cases, we develop a greedy algorithm to approximate the minimum set of driver nodes sufficient for target control. We find that degree heterogeneous networks are target controllable with higher efficiency than homogeneous networks and that the structure of many real-world networks are suitable for efficient target control.


PLOS ONE | 2012

Transcriptome Profiling of Citrus Fruit Response to Huanglongbing Disease

Federico Martinelli; Sandra L. Uratsu; Ute Albrecht; Russell L. Reagan; My L. Phu; Monica Britton; Vincent Buffalo; Joseph Fass; Elizabeth Leicht; Weixiang Zhao; Dawei Lin; Raissa M. D'Souza; Cristina E. Davis; Kim D. Bowman; Abhaya M. Dandekar

Huanglongbing (HLB) or “citrus greening” is the most destructive citrus disease worldwide. In this work, we studied host responses of citrus to infection with Candidatus Liberibacter asiaticus (CaLas) using next-generation sequencing technologies. A deep mRNA profile was obtained from peel of healthy and HLB-affected fruit. It was followed by pathway and protein-protein network analysis and quantitative real time PCR analysis of highly regulated genes. We identified differentially regulated pathways and constructed networks that provide a deep insight into the metabolism of affected fruit. Data mining revealed that HLB enhanced transcription of genes involved in the light reactions of photosynthesis and in ATP synthesis. Activation of protein degradation and misfolding processes were observed at the transcriptomic level. Transcripts for heat shock proteins were down-regulated at all disease stages, resulting in further protein misfolding. HLB strongly affected pathways involved in source-sink communication, including sucrose and starch metabolism and hormone synthesis and signaling. Transcription of several genes involved in the synthesis and signal transduction of cytokinins and gibberellins was repressed while that of genes involved in ethylene pathways was induced. CaLas infection triggered a response via both the salicylic acid and jasmonic acid pathways and increased the transcript abundance of several members of the WRKY family of transcription factors. Findings focused on the fruit provide valuable insight to understanding the mechanisms of the HLB-induced fruit disorder and eventually developing methods based on small molecule applications to mitigate its devastating effects on fruit production.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Emergence of tempered preferential attachment from optimization

Raissa M. D'Souza; Christian Borgs; Jennifer T. Chayes; Noam Berger; Robert Kleinberg

We show how preferential attachment can emerge in an optimization framework, resolving a long-standing theoretical controversy. We also show that the preferential attachment model so obtained has two novel features, saturation and viability, which have natural interpretations in the underlying network and lead to a power-law degree distribution with exponential cutoff. Moreover, we consider a generalized version of this preferential attachment model with independent saturation and viability, leading to a broader class of power laws again with exponential cutoff. We present a collection of empirical observations from social, biological, physical, and technological networks, for which such degree distributions give excellent fits. We suggest that, in general, optimization models that give rise to preferential attachment with saturation and viability effects form a good starting point for the analysis of many networks.


Physical Review Letters | 2011

Explosive percolation with multiple giant components.

Wei Chen; Raissa M. D'Souza

We generalize the random graph evolution process of Bohman, Frieze, and Wormald [T. Bohman, A. Frieze, and N. C. Wormald, Random Struct. Algorithms, 25, 432 (2004)]. Potential edges, sampled uniformly at random from the complete graph, are considered one at a time and either added to the graph or rejected provided that the fraction of accepted edges is never smaller than a decreasing function asymptotically approaching the value α=1/2. We show that multiple giant components appear simultaneously in a strongly discontinuous percolation transition and remain distinct. Furthermore, tuning the value of α determines the number of such components with smaller α leading to an increasingly delayed and more explosive transition. The location of the critical point and strongly discontinuous nature are not affected if only edges which span components are sampled.


Physical Review Letters | 2010

Local Cluster Aggregation Models of Explosive Percolation

Raissa M. D'Souza; Michael Mitzenmacher

We introduce perhaps the simplest models of graph evolution with choice that demonstrate discontinuous percolation transitions and can be analyzed via mathematical evolution equations. These models are local, in the sense that at each step of the process one edge is selected from a small set of potential edges sharing common vertices and added to the graph. We show that the evolution can be accurately described by a system of differential equations and that such models exhibit the discontinuous emergence of the giant component. Yet they also obey scaling behaviors characteristic of continuous transitions, with scaling exponents that differ from the classic Erdos-Rényi model.


Physical Review E | 2010

Resilience and rewiring of the passenger airline networks in the United States.

Daniel R. Wuellner; Soumen Roy; Raissa M. D'Souza

The air transportation network, a fundamental component of critical infrastructure, is formed from a collection of individual air carriers, each one with a methodically designed and engineered network structure. We analyze the individual structures of the seven largest passenger carriers in the USA and find that networks with dense interconnectivity, as quantified by large k cores for high values of k, are extremely resilient to both targeted removal of airports (nodes) and random removal of flight paths (edges). Such networks stay connected and incur minimal increase in an heuristic travel time despite removal of a majority of nodes or edges. Similar results are obtained for targeted removal based on either node degree or centrality. We introduce network rewiring schemes that boost resilience to different levels of perturbation while preserving total number of flight and gate requirements. Recent studies have focused on the asymptotic optimality of hub-and-spoke spatial networks under normal operating conditions, yet our results indicate that point-to-point architectures can be much more resilient to perturbations.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Transdisciplinary electric power grid science

Charles D. Brummitt; Paul Hines; Ian Dobson; Cristopher Moore; Raissa M. D'Souza

When a tenth of humanity lost power over 2 days in India in July 2012, technical failure was not the only culprit. Like many recent blackouts, this outage resulted from couplings among systems, including extreme weather exacerbated by climate change, human operator errors, suboptimal policies, and market forces. Predictions that climate change intensifies droughts and tropical cyclones presage more weather-induced blackouts. Even without weather disasters, small disturbances can trigger cascading failures, and so can ill-designed electricity markets (1) and dependence on cyber infrastructure.


Physical Review E | 1999

Thermodynamically reversible generalization of diffusion limited aggregation.

Raissa M. D'Souza; Norman Margolus

We introduce a lattice gas model of cluster growth via the diffusive aggregation of particles in a closed system obeying a local, deterministic, microscopically reversible dynamics. This model roughly corresponds to placing the irreversible diffusion limited aggregation model (DLA) in contact with a heat bath. Particles release latent heat when aggregating, while singly connected cluster members can absorb heat and evaporate. The heat bath is initially empty, hence we observe the flow of entropy from the aggregating gas of particles into the heat bath, which is being populated by diffusing heat tokens. Before the population of the heat bath stabilizes, the cluster morphology (quantified by the fractal dimension) is similar to a standard DLA cluster. The cluster then gradually anneals, becoming more tenuous, until reaching configurational equilibrium when the cluster morphology resembles a quenched branched random polymer. As the microscopic dynamics is invertible, we can reverse the evolution, observe the inverse flow of heat and entropy, and recover the initial condition. This simple system provides an explicit example of how macroscopic dissipation and self-organization can result from an underlying microscopically reversible dynamics. We present a detailed description of the dynamics for the model, discuss the macroscopic limit, and give predictions for the equilibrium particle densities obtained in the mean field limit. Empirical results for the growth are then presented, including the observed equilibrium particle densities, the temperature of the system, the fractal dimension of the growth clusters, scaling behavior, finite size effects, and the approach to equilibrium. We pay particular attention to the temporal behavior of the growth process and show that the relaxation to the maximum entropy state is initially a rapid nonequilibrium process, then subsequently it is a quasistatic process with a well defined temperature.

Collaboration


Dive into the Raissa M. D'Souza's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wei Chen

Shenzhen Stock Exchange

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mehran Mesbahi

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Airlie Chapman

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Alex Waagen

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge