Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Raj K. Batra is active.

Publication


Featured researches published by Raj K. Batra.


Cancer Research | 2005

Tumor Cyclooxygenase-2/Prostaglandin E2–Dependent Promotion of FOXP3 Expression and CD4+CD25+ T Regulatory Cell Activities in Lung Cancer

Sherven Sharma; Seok-Chul Yang; Li Zhu; Karen L. Reckamp; Brian Gardner; Felicita Baratelli; Min Huang; Raj K. Batra; Steven M. Dubinett

Cyclooxygenase (COX)-2 and its product prostaglandin (PG) E2 underlie an immunosuppressive network that is important in the pathogenesis of non-small cell lung cancer. CD4+ CD25+ T regulatory (Treg) cells play an important role in maintenance of immunologic self-tolerance. CD4+ CD25+ Treg cell activities increase in lung cancer and appear to play a role in suppressing antitumor immune responses. Definition of the pathways controlling Treg cell activities will enhance our understanding of limitation of the host antitumor immune responses. Tumor-derived COX-2/PGE2 induced expression of the Treg cell-specific transcription factor, Foxp3, and increased Treg cell activity. Assessment of E-prostanoid (EP) receptor requirements revealed that PGE2-mediated induction of Treg cell Foxp3 gene expression was significantly reduced in the absence of the EP4 receptor and ablated in the absence of the EP2 receptor expression. In vivo, COX-2 inhibition reduced Treg cell frequency and activity, attenuated Foxp3 expression in tumor-infiltrating lymphocytes, and decreased tumor burden. Transfer of Treg cells or administration of PGE2 to mice receiving COX-2 inhibitors reversed these effects. We conclude that inhibition of COX-2/PGE2 suppresses Treg cell activity and enhances antitumor responses.


Cancer Research | 2006

Cyclooxygenase-2–Dependent Regulation of E-Cadherin: Prostaglandin E2 Induces Transcriptional Repressors ZEB1 and Snail in Non–Small Cell Lung Cancer

Mariam Dohadwala; Seok-Chul Yang; Jie Luo; Sherven Sharma; Raj K. Batra; Min Huang; Ying Lin; Lee Goodglick; Kostyantyn Krysan; Michael C. Fishbein; Longsheng Hong; Chi Lai; Robert B. Cameron; Robert M. Gemmill; Harry A. Drabkin; Steven M. Dubinett

Elevated tumor cyclooxygenase-2 (COX-2) expression is associated with tumor invasion, metastasis, and poor prognosis in non-small cell lung cancer (NSCLC). Here, we report that COX-2-dependent pathways contribute to the modulation of E-cadherin expression in NSCLC. First, whereas genetically modified COX-2-sense (COX-2-S) NSCLC cells expressed low E-cadherin and showed diminished capacity for cellular aggregation, genetic or pharmacologic inhibition of tumor COX-2 led to increased E-cadherin expression and resulted in augmented homotypic cellular aggregation among NSCLC cells in vitro. An inverse relationship between COX-2 and E-cadherin was shown in situ by double immunohistochemical staining of human lung adenocarcinoma tissue sections. Second, treatment of NSCLC cells with exogenous prostaglandin E(2) (PGE(2)) significantly decreased the expression of E-cadherin, whereas treatment of COX-2-S cells with celecoxib (1 mumol/L) led to increased E-cadherin expression. Third, the transcriptional suppressors of E-cadherin, ZEB1 and Snail, were up-regulated in COX-2-S cells or PGE(2)-treated NSCLC cells but decreased in COX-2-antisense cells. PGE(2) exposure led to enhanced ZEB1 and Snail binding at the chromatin level as determined by chromatin immunoprecipitation assays. Small interfering RNA-mediated knockdown of ZEB1 or Snail interrupted the capacity of PGE(2) to down-regulate E-cadherin. Fourth, an inverse relationship between E-cadherin and ZEB1 and a direct relationship between COX-2 and ZEB1 were shown by immunohistochemical staining of human lung adenocarcinoma tissue sections. These findings indicate that PGE(2), in autocrine or paracrine fashion, modulates transcriptional repressors of E-cadherin and thereby regulates COX-2-dependent E-cadherin expression in NSCLC. Thus, blocking PGE(2) production or activity may contribute to both prevention and treatment of NSCLC.


Journal of Immunology | 2000

Secondary Lymphoid Tissue Chemokine Mediates T Cell-Dependent Antitumor Responses In Vivo

Sherven Sharma; Marina Stolina; Jie Luo; Robert M. Strieter; Marie D. Burdick; Li X. Zhu; Raj K. Batra; Steven M. Dubinett

Secondary lymphoid tissue chemokine (SLC, also referred to as Exodus 2 or 6Ckine) is a recently identified high endothelial-derived CC chemokine. The ability of SLC to chemoattract both Th1 lymphocytes and dendritic cells formed the rationale to evaluate this chemokine in cancer immunotherapy. Intratumoral injection of recombinant SLC evidenced potent antitumor responses and led to complete tumor eradication in 40% of treated mice. SLC-mediated antitumor responses were lymphocyte dependent as evidenced by the fact that this therapy did not alter tumor growth in SCID mice. Studies performed in CD4 and CD8 knockout mice also revealed a requirement for both CD4 and CD8 lymphocyte subsets for SLC-mediated tumor regression. In immunocompetent mice, intratumoral SLC injection led to a significant increase in CD4 and CD8 T lymphocytes and dendritic cells, infiltrating both the tumor and the draining lymph nodes. These cell infiltrates were accompanied by the enhanced elaboration of Th1 cytokines and chemokines monokine induced by IFN-γ and IFN-γ-inducible protein 10 but a concomitant decrease in immunosuppressive cytokines at the tumor site. In response to irradiated autologous tumor, splenic and lymph node-derived cells from SLC-treated tumor-bearing mice secreted significantly more IFN-γ, GM-CSF, and IL-12 and reduced levels of IL-10 than did diluent-treated tumor-bearing mice. After stimulation with irradiated autologous tumor, lymph node-derived lymphocytes from SLC-treated tumor-bearing mice demonstrated enhanced cytolytic capacity, suggesting the generation of systemic immune responses. These findings provide a strong rationale for further evaluation of SLC in tumor immunity and its use in cancer immunotherapy.


Journal of Clinical Investigation | 2002

IL-7 inhibits fibroblast TGF-β production and signaling in pulmonary fibrosis

Min Huang; Sherven Sharma; Li X. Zhu; Michael P. Keane; Jie Luo; Ling Zhang; Marie D. Burdick; Ying Q. Lin; Mariam Dohadwala; Brian Gardner; Raj K. Batra; Robert M. Strieter; Steven M. Dubinett

Based on studies by our group and others, we hypothesized that IL-7 may possess antifibrotic activities in an IFN-gamma-dependent and independent manner. Here, we have evaluated the antifibrotic therapeutic potential of IL-7 in both in vitro and in vivo pulmonary fibrosis models. IL-7 inhibited both TGF-beta production and signaling in fibroblasts and required an intact JAK1/STAT1 signal transduction pathway. IL-7-mediated inhibition of TGF-beta signaling was found to be associated with an increase in Smad7, a major inhibitory regulator in the SMAD family. In the presence of IL-7, Smad7 dominant negative fibroblasts restored TGF-beta-induced collagen synthesis, indicating that an IL-7-mediated increase in Smad7 suppressed TGF-beta signaling. Consistent with these in vitro findings, recombinant IL-7 decreased bleomycin-induced pulmonary fibrosis in vivo, independent of IFN-gamma. The antifibrotic activities of IL-7 merit further basic and clinical investigation for the treatment of pulmonary fibrosis.


Human Gene Therapy | 2000

Intratumoral administration of adenoviral interleukin 7 gene-modified dendritic cells augments specific antitumor immunity and achieves tumor eradication

Patrice W. Miller; Sherven Sharma; Marina Stolina; Lisa H. Butterfield; Jie Luo; Ying Lin; Mariam Dohadwala; Raj K. Batra; Lily Wu; James S. Economou; Steven M. Dubinett

In two murine lung cancer models adenoviral interleukin 7-transduced dendritic cells (DC-AdIL-7) were administered intratumorally, resulting in complete tumor regression. Intratumoral DC-AdIL-7 therapy was as effective as DCs pulsed with specific tumor peptide antigens. Comparison with other intratumoral therapies including recombinant IL-7, AdIL-7 vector alone, unmodified DCs, IL-7-transduced fibroblasts, or DCs pulsed with tumor lysates revealed DC-AdIL-7 therapy to be superior in achieving antitumor responses and augmenting immunogenicity. Mice with complete tumor eradication as a result of either DC-AdIL-7 or AdIL-7 therapy were rechallenged with parental tumor cells 30 days or more after complete tumor eradication. All the DC-AdIL-7-treated mice completely rejected a secondary rechallenge, whereas the AdIL-7-treated mice had sustained antitumor effects in only 20-25% of the mice. DC-AdIL-7 therapy was more effective than AdIL-7 in achieving systemic antitumor responses and enhancing immunogenicity. After complete tumor eradication, those mice treated with DC-AdIL-7 evidenced significantly greater release of splenocyte GM-CSF and IFN-gamma than did controls or AdIL-7-treated mice. After intratumoral injection, gene-modified DCs trafficked from the tumor to lymph node sites and spleen. DCs were detected in nodal tissues for up to 7 days after intratumoral injection. We report that intratumoral DC-AdIL-7 leads to significant systemic immune responses and potent antitumor effects in murine lung cancer models.


Cancer Research | 2004

Cyclooxygenase-2-Dependent Expression of Angiogenic CXC Chemokines ENA-78/CXC Ligand (CXCL) 5 and Interleukin-8/CXCL8 in Human Non-Small Cell Lung Cancer

Mehis Põld; Li X. Zhu; Sherven Sharma; Marie D. Burdick; Ying Lin; Peter P. Lee; Anu Põld; Jie Luo; Kostyantyn Krysan; Mariam Dohadwala; Jenny T. Mao; Raj K. Batra; Robert M. Strieter; Steven M. Dubinett

Elevated tumor cyclooxygenase (COX)-2 activity plays a multifaceted role in non-small cell lung cancer (NSCLC). To elucidate the role of COX-2 in the in vitro and in vivo expression of two known NSCLC angiogenic peptides, CXC ligand (CXCL) 8 and CXCL5, we studied two COX-2 gene-modified NSCLC cell lines, A549 and H157. COX-2 overexpression enhanced the in vitro expression of both CXCL8 and CXCL5. In contrast, specific COX-2 inhibition decreased the production of both peptides as well as nuclear translocation of nuclear factor κB. In a severe combined immunodeficient mouse model of human NSCLC, the enhanced tumor growth of COX-2-overexpressing tumors was inhibited by neutralizing anti-CXCL5 and anti-CXCL8 antisera. We conclude that COX-2 contributes to the progression of NSCLC tumorigenesis by enhancing the expression of angiogenic chemokines CXCL8 and CXCL5.


Cancer Gene Therapy | 2001

Ectopic expression of the thyroperoxidase gene augments radioiodide uptake and retention mediated by the sodium iodide symporter in non-small cell lung cancer.

Min Huang; Raj K. Batra; Takahiko Kogai; Ying Q. Lin; Jerome M. Hershman; Alan Lichtenstein; Sherven Sharma; Li X. Zhu; Gregory A. Brent; Steven M. Dubinett

Radioiodide is an effective therapy for thyroid cancer. This treatment modality exploits the thyroid-specific expression of the sodium iodide symporter ( NIS ) gene, which allows rapid internalization of iodide into thyroid cells. To test whether a similar treatment strategy could be exploited in nonthyroid malignancies, we transfected non–small cell lung cancer (NSCLC) cell lines with the NIS gene. Although the expression of NIS allowed significant radioiodide uptake in the transfected NSCLC cell lines, rapid radioiodide efflux limited tumor cell killing. Because thyroperoxidase ( TPO ) catalyzes iodination of proteins and subsequently causes iodide retention within thyroid cells, we hypothesized that coexpression of both NIS and TPO genes would overcome this deficiency. Our results show that transfection of NSCLC cells with both human NIS and TPO genes resulted in an increase in radioiodide uptake and retention and enhanced tumor cell apoptosis. These findings suggest that single gene therapy with only the NIS gene may have limited efficacy because of rapid efflux of radioiodide. In contrast, the combination of NIS and TPO gene transfer, with resulting TPO-mediated organification and intracellular retention of radioiodide, may lead to more effective tumor cell death. Thus, TPO could be used as a therapeutic strategy to enhance the NIS-based radioiodide concentrator gene therapy for locally advanced lung cancer. Cancer Gene Therapy (2001) 8, 612–618


Clinical Cancer Research | 2004

Intratumoral Administration of Dendritic Cells Overexpressing CCL21 Generates Systemic Antitumor Responses and Confers Tumor Immunity

Seok-Chul Yang; Sven Hillinger; Karen Riedl; Ling Zhang; Li Zhu; Min Huang; Kimberly Atianzar; Brian Y. Kuo; Brian Gardner; Raj K. Batra; Robert M. Strieter; Steven M. Dubinett; Sherven Sharma

To achieve in situ tumor antigen uptake and presentation, intratumoral administration of ex vivo-generated, gene-modified murine bone marrow-derived dendritic cells (DC) was used in a murine lung cancer model. To attract mature host DC and activated T cells at the tumor site, the DC were transduced with an adenoviral vector expressing secondary lymphoid tissue chemokine (CCL21/SLC). Sixty percent of the mice treated with 106 DC-AdCCL21 intratumorally (7–10 ng/ml/106 cells/24 h of CCL21) at weekly intervals for 3 weeks showed complete tumor eradication, whereas only 25% of mice had complete resolution of tumors when mice were treated with fibroblasts expressing CCL21. In contrast only 12% of the mice treated with unmodified or control vector modified DC (DC-AdCV) showed complete tumor eradication. DC-AdCCL21 administration led to increases in the CD4+, CD8+, and CD3+CXCR3+ T cells, as well as DC expressing CD11c+ DEC205+. CD4+CD25+ T-regulatory cells infiltrating the tumors were markedly reduced after DC-AdCCL21 therapy. The tumor site cellular infiltrates were accompanied by the enhanced elaboration of granulocyte macrophage colony-stimulating factor, IFN-γ, MIG/CXCL9, IP-10/CXCL10, and interleukin 12, but decreases in the immunosuppressive mediators transforming growth factor β and prostaglandin E2. DC-AdCCL21-treated tumor-bearing mice showed enhanced frequency of tumor-specific T lymphocytes secreting IFN-γ, and tumor protective immunity was induced after DC-AdCCL21 therapy. In vivo depletion of IP-10/CXCL10, MIG/CXCL9, or IFN-γ significantly reduced the antitumor efficacy of DC-AdCCL21. These findings provide a strong rationale for the evaluation of DC-AdCCL21 in cancer immunotherapy.


Molecular Pharmacology | 2007

Pioglitazone and Rosiglitazone Decrease Prostaglandin E2 in Non–Small-Cell Lung Cancer Cells by Up-Regulating 15-Hydroxyprostaglandin Dehydrogenase

Saswati Hazra; Raj K. Batra; Hsin H. Tai; Sherven Sharma; Xiaoyan Cui; Steven M. Dubinett

Lung cancer cells elaborate the immunosuppressive and antiapoptotic mediator prostaglandin E2 (PGE2), a product of cyclooxygenase-2 (COX-2) enzyme activity. Because peroxisome proliferator-activated receptor (PPAR)γ ligands, such as thiazolidinediones (TZDs), inhibit lung cancer cell growth, we examined the effect of the TZDs pioglitazone and rosiglitazone on PGE2 levels in non–small-cell lung cancer (NSCLC) A427 and A549 cells. Both TZDs inhibited PGE2 production in NSCLC cells via a COX-2 independent pathway. To define the mechanism underlying COX-2 independent suppression of PGE2 production, we focused on other enzymes responsible for the synthesis and degradation of PGE2. The expression of none of the three prostaglandin synthases (microsomal PGES1, PGES2 and cystosolic PGES) was down-regulated by the TZDs. It is noteworthy that 15-hydroxyprostaglandin dehydrogenase (15-PGDH), an enzyme that produces biologically inactive 15-ketoprostaglandins from active PGE2, was induced by TZDs. The TZD-mediated suppression of PGE2 concentration was significantly inhibited by small interfering RNA to 15-PGDH. Studies using dominant-negative PPARγ overexpression or 2-chloro-5-nitrobenzanilide (GW9662; a PPARγ antagonist) revealed that the suppressive effect of the TZDs on PGE2 is PPARγ-independent. Together, these findings indicate that it is possible to use a clinically available pharmacological intervention to suppress tumor-derived PGE2 by enhancing catabolism rather than blocking synthesis.


Molecular Cancer | 2003

SLC/CCL21-mediated anti-tumor responses require IFNγ, MIG/CXCL9 and IP-10/CXCL10

Sherven Sharma; Seok-Chul Yang; Sven Hillinger; Li X. Zhu; Min Huang; Raj K. Batra; Jeff Lin; Marie D. Burdick; Robert M. Strieter; Steven M. Dubinett

BackgroundSLC/CCL21, normally expressed in high endothelial venules and in T cell zones of spleen and lymph nodes, strongly attracts T cells and dendritic cells (DC). We have previously shown that SLC/CCL21-mediated anti-tumor responses are accompanied by significant induction of IFNγ and the CXC chemokines, monokine induced by IFNγ (MIG/CXCL9) and IFNγ-inducible protein-10 (IP-10/CXCL10).ResultsWe assessed the importance of IFNγ, IP-10/CXCL10 and MIG/CXCL9 in SLC/CCL21 therapy. In vivo depletion of IP-10/CXCL10, MIG/CXCL9 or IFNγ significantly reduced the anti-tumor efficacy of SLC/CCL21. Assessment of cytokine production at the tumor site showed an interdependence of IFNγ, MIG/CXCL9 and IP-10/CXCL10; neutralization of any one of these cytokines caused a concomitant decrease in all three cytokines. Similarly, neutralization of any one of these cytokines led to a decrease in the frequency of CXCR3+ve T cells and CD11c+ve DC at the tumor site.ConclusionThese findings indicate that the full potency of SLC/CCL21-mediated anti-tumor responses require in part the induction of IFNγ, MIG/CXCL9 and IP-10/CXCL10.

Collaboration


Dive into the Raj K. Batra's collaboration.

Top Co-Authors

Avatar

Sherven Sharma

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Min Huang

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jie Luo

University of California

View shared research outputs
Top Co-Authors

Avatar

Saroj K. Basak

University of California

View shared research outputs
Top Co-Authors

Avatar

Li Zhu

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Seok-Chul Yang

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge