Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Raj Kumar Pan is active.

Publication


Featured researches published by Raj Kumar Pan.


Physical Review E | 2011

Small But Slow World: How Network Topology and Burstiness Slow Down Spreading

Márton Karsai; Mikko Kivelä; Raj Kumar Pan; Kimmo Kaski; János Kertész; Albert-László Barabási; Jari Saramäki

While communication networks show the small-world property of short paths, the spreading dynamics in them turns out slow. Here, the time evolution of information propagation is followed through communication networks by using empirical data on contact sequences and the susceptible-infected model. Introducing null models where event sequences are appropriately shuffled, we are able to distinguish between the contributions of different impeding effects. The slowing down of spreading is found to be caused mainly by weight-topology correlations and the bursty activity patterns of individuals.


Physical Review E | 2011

Path lengths, correlations, and centrality in temporal networks

Raj Kumar Pan; Jari Saramäki

In temporal networks, where nodes interact via sequences of temporary events, information or resources can only flow through paths that follow the time ordering of events. Such temporal paths play a crucial role in dynamic processes. However, since networks have so far been usually considered static or quasistatic, the properties of temporal paths are not yet well understood. Building on a definition and algorithmic implementation of the average temporal distance between nodes, we study temporal paths in empirical networks of human communication and air transport. Although temporal distances correlate with static graph distances, there is a large spread, and nodes that appear close from the static network view may be connected via slow paths or not at all. Differences between static and temporal properties are further highlighted in studies of the temporal closeness centrality. In addition, correlations and heterogeneities in the underlying event sequences affect temporal path lengths, increasing temporal distances in communication networks and decreasing them in the air transport network.


Scientific Reports | 2012

World citation and collaboration networks: uncovering the role of geography in science

Raj Kumar Pan; Kimmo Kaski; Santo Fortunato

Modern information and communication technologies, especially the Internet, have diminished the role of spatial distances and territorial boundaries on the access and transmissibility of information. This has enabled scientists for closer collaboration and internationalization. Nevertheless, geography remains an important factor affecting the dynamics of science. Here we present a systematic analysis of citation and collaboration networks between cities and countries, by assigning papers to the geographic locations of their authors’ affiliations. The citation flows as well as the collaboration strengths between cities decrease with the distance between them and follow gravity laws. In addition, the total research impact of a country grows linearly with the amount of national funding for research & development. However, the average impact reveals a peculiar threshold effect: the scientific output of a country may reach an impact larger than the world average only if the country invests more than about 100,000 USD per researcher annually.


Physical Review E | 2007

Collective behavior of stock price movements in an emerging market.

Raj Kumar Pan; Sitabhra Sinha

To investigate the universality of the structure of interactions in different markets, we analyze the cross-correlation matrix C of stock price fluctuations in the National Stock Exchange (NSE) of India. We find that this emerging market exhibits strong correlations in the movement of stock prices compared to developed markets, such as the New York Stock Exchange (NYSE). This is shown to be due to the dominant influence of a common market mode on the stock prices. By comparison, interactions between related stocks, e.g., those belonging to the same business sector, are much weaker. This lack of distinct sector identity in emerging markets is explicitly shown by reconstructing the network of mutually interacting stocks. Spectral analysis of C for NSE reveals that, the few largest eigenvalues deviate from the bulk of the spectrum predicted by random matrix theory, but they are far fewer in number compared to, e.g., NYSE. We show this to be due to the relative weakness of intrasector interactions between stocks, compared to the market mode, by modeling stock price dynamics with a two-factor model. Our results suggest that the emergence of an internal structure comprising multiple groups of strongly coupled components is a signature of market development.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Reputation and impact in academic careers

Alexander Michael Petersen; Santo Fortunato; Raj Kumar Pan; Kimmo Kaski; Orion Penner; Armando Rungi; Massimo Riccaboni; H. Eugene Stanley; Fabio Pammolli

Significance Over a scientist’s career, a reputation is developed, a standing within a research community, based largely upon the quantity and quality of his/her publications. Here, we develop a framework for quantifying the influence author reputation has on a publication’s future impact. We find author reputation plays a key role in driving a paper’s citation count early in its citation life cycle, before a tipping point, after which reputation has much less influence relative to the paper’s citation count. In science, perceived quality, and decisions made based on those perceptions, is increasingly linked to citation counts. Shedding light on the complex mechanisms driving these quantitative measures facilitates not only better evaluation of scientific outputs but also a more transparent evaluation of the scientists producing them. Reputation is an important social construct in science, which enables informed quality assessments of both publications and careers of scientists in the absence of complete systemic information. However, the relation between reputation and career growth of an individual remains poorly understood, despite recent proliferation of quantitative research evaluation methods. Here, we develop an original framework for measuring how a publication’s citation rate Δc depends on the reputation of its central author i, in addition to its net citation count c. To estimate the strength of the reputation effect, we perform a longitudinal analysis on the careers of 450 highly cited scientists, using the total citations Ci of each scientist as his/her reputation measure. We find a citation crossover c×, which distinguishes the strength of the reputation effect. For publications with c < c×, the author’s reputation is found to dominate the annual citation rate. Hence, a new publication may gain a significant early advantage corresponding to roughly a 66% increase in the citation rate for each tenfold increase in Ci. However, the reputation effect becomes negligible for highly cited publications meaning that, for c ≥ c×, the citation rate measures scientific impact more transparently. In addition, we have developed a stochastic reputation model, which is found to reproduce numerous statistical observations for real careers, thus providing insight into the microscopic mechanisms underlying cumulative advantage in science.


Journal of Statistical Mechanics: Theory and Experiment | 2012

Multiscale analysis of spreading in a large communication network

Mikko Kivelä; Raj Kumar Pan; Kimmo Kaski; János Kertész; Jari Saramäki; Márton Karsai

In temporal networks, both the topology of the underlying network and the timings of interaction events can be crucial in determining how a dynamic process mediated by the network unfolds. We have explored the limiting case of the speed of spreading in the SI model, set up such that an event between an infectious and a susceptible individual always transmits the infection. The speed of this process sets an upper bound for the speed of any dynamic process that is mediated through the interaction events of the network. With the help of temporal networks derived from large-scale time-stamped data on mobile phone calls, we extend earlier results that indicate the slowing-down effects of burstiness and temporal inhomogeneities. In such networks, links are not permanently active, but dynamic processes are mediated by recurrent events taking place on the links at specific points in time. We perform a multiscale analysis and pinpoint the importance of the timings of event sequences on individual links, their correlations with neighboring sequences, and the temporal pathways taken by the network-scale spreading process. This is achieved by studying empirically and analytically different characteristic relay times of links, relevant to the respective scales, and a set of temporal reference models that allow for removing selected time-domain correlations one by one. Our analysis shows that for the spreading velocity, time-domain inhomogeneities are as important as the network topology, which indicates the need to take time-domain information into account when studying spreading dynamics. In particular, results for the different characteristic relay times underline the importance of the burstiness of individual links.


Journal of Informetrics | 2015

Attention Decay in Science

Pietro Della Briotta Parolo; Raj Kumar Pan; Rumi Ghosh; Bernardo A. Huberman; Kimmo Kaski; Santo Fortunato

The exponential growth in the number of scientific papers makes it increasingly difficult for researchers to keep track of all the publications relevant to their work. Consequently, the attention that can be devoted to individual papers, measured by their citation counts, is bound to decay rapidly. In this work we make a thorough study of the life-cycle of papers in different disciplines. Typically, the citation rate of a paper increases up to a few years after its publication, reaches a peak and then decreases rapidly. This decay can be described by an exponential or a power law behavior, as in ultradiffusive processes, with exponential fitting better than power law for the majority of cases. The decay is also becoming faster over the years, signaling that nowadays papers are forgotten more quickly. However, when time is counted in terms of the number of published papers, the rate of decay of citations is fairly independent of the period considered. This indicates that the attention of scholars depends on the number of published items, and not on real time.


PLOS ONE | 2011

Emergence of bursts and communities in evolving weighted networks.

Hang-Hyun Jo; Raj Kumar Pan; Kimmo Kaski

Understanding the patterns of human dynamics and social interaction and the way they lead to the formation of an organized and functional society are important issues especially for techno-social development. Addressing these issues of social networks has recently become possible through large scale data analysis of mobile phone call records, which has revealed the existence of modular or community structure with many links between nodes of the same community and relatively few links between nodes of different communities. The weights of links, e.g., the number of calls between two users, and the network topology are found correlated such that intra-community links are stronger compared to the weak inter-community links. This feature is known as Granovetters “The strength of weak ties” hypothesis. In addition to this inhomogeneous community structure, the temporal patterns of human dynamics turn out to be inhomogeneous or bursty, characterized by the heavy tailed distribution of time interval between two consecutive events, i.e., inter-event time. In this paper, we study how the community structure and the bursty dynamics emerge together in a simple evolving weighted network model. The principal mechanisms behind these patterns are social interaction by cyclic closure, i.e., links to friends of friends and the focal closure, links to individuals sharing similar attributes or interests, and human dynamics by task handling process. These three mechanisms have been implemented as a network model with local attachment, global attachment, and priority-based queuing processes. By comprehensive numerical simulations we show that the interplay of these mechanisms leads to the emergence of heavy tailed inter-event time distribution and the evolution of Granovetter-type community structure. Moreover, the numerical results are found to be in qualitative agreement with empirical analysis results from mobile phone call dataset.


Scientific Reports | 2015

Inferring human mobility using communication patterns.

Vasyl Palchykov; Marija Mitrović; Hang-Hyun Jo; Jari Saramäki; Raj Kumar Pan

Understanding the patterns of mobility of individuals is crucial for a number of reasons, from city planning to disaster management. There are two common ways of quantifying the amount of travel between locations: by direct observations that often involve privacy issues, e.g., tracking mobile phone locations, or by estimations from models. Typically, such models build on accurate knowledge of the population size at each location. However, when this information is not readily available, their applicability is rather limited. As mobile phones are ubiquitous, our aim is to investigate if mobility patterns can be inferred from aggregated mobile phone call data alone. Using data released by Orange for Ivory Coast, we show that human mobility is well predicted by a simple model based on the frequency of mobile phone calls between two locations and their geographical distance. We argue that the strength of the model comes from directly incorporating the social dimension of mobility. Furthermore, as only aggregated call data is required, the model helps to avoid potential privacy problems.


Physica A-statistical Mechanics and Its Applications | 2008

Inverse-cubic law of index fluctuation distribution in Indian markets

Raj Kumar Pan; Sitabhra Sinha

One of the principal statistical features characterizing the activity in financial markets is the distribution of fluctuations in market indicators such as the index. While the developed stock markets, e.g., the New York Stock Exchange (NYSE) have been found to show heavy-tailed return distribution with a characteristic power-law exponent, the universality of such behavior has been debated, particularly in regard to emerging markets. Here we investigate the distribution of several indices from the Indian financial market, one of the largest emerging markets in the world. We have used tick-by-tick data from the National Stock Exchange (NSE), as well as, daily closing data from both the NSE and Bombay Stock Exchange (BSE). We find that the cumulative distributions of index returns have long tails consistent with a power law having exponent α≈3, at time scales of both 1 min and 1 day. This “inverse-cubic law” is quantitatively similar to what has been observed in developed markets, thereby providing strong evidence of universality in the behavior of market fluctuations.

Collaboration


Dive into the Raj Kumar Pan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Santo Fortunato

Institute for Scientific Interchange

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hang-Hyun Jo

Asia Pacific Center for Theoretical Physics

View shared research outputs
Top Co-Authors

Avatar

János Kertész

Central European University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge