Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rajani Maharjan is active.

Publication


Featured researches published by Rajani Maharjan.


The Journal of Clinical Endocrinology and Metabolism | 2013

Somatic Mutations in H-RAS in Sporadic Pheochromocytoma and Paraganglioma Identified by Exome Sequencing

Joakim Crona; Alberto Delgado Verdugo; Rajani Maharjan; Peter Stålberg; Dan Granberg; Per Hellman; Peyman Björklund

CONTEXT Up to 60% of pheochromocytoma (PCC) and paraganglioma (PGL) are associated with either somatic or germline mutations in established PCC and PGL susceptibility loci. Most unexplained cases are characterized by an increased activity of the RAS/RAF/ERK signaling pathway. Mutations in RAS subtypes H, K, and N are common in human cancers; however, previous studies have been inconsistent regarding the mutational status of RAS in PCC and PGL. OBJECTIVES The aim of this study was to identify novel disease causing genes in PCC and PGL tumors. DESIGN, SETTING, AND PARTICIPANTS Four benign and sporadic PCC and PGL tumors were subjected to whole exome sequencing using the Illumina HiSeq Platform. Sequences were processed by CLC genomics 4.9 bioinformatics software and the acquired list of genetic variants was filtered against the Catalogue of Somatic Mutations in Cancer database. Findings were validated in an additional 78 PCC and PGL tumor lesions. RESULTS Exome sequencing identified 2 cases with somatic mutations in the H-RAS. In total, 6.9% (n = 4/58) of tumors negative for mutations in major PCC and PGL loci had mutations in H-RAS: G13R, Q61K, and Q61R. There were 3 PCC and 1 PGL; all had sporadic presentation with benign tumor characteristics and substantial increases in norepinephrine and/or epinephrine. H-RAS tumors were exclusively found in male patients (P = .007). CONCLUSIONS We identified recurrent somatic H-RAS mutations in pheochromocytoma and paraganglioma. Tumors with H-RAS mutations had activation of the RAS/RAF/ERK signaling pathway and were associated with male PCC patients having benign and sporadic disease characteristics. H-RAS could serve as a prognostic and predictive marker as well as a novel therapeutic target.


Scientific Reports | 2016

Activating mutations in CTNNB1 in aldosterone producing adenomas

Tobias Åkerström; Rajani Maharjan; Holger S. Willenberg; Kenko Cupisti; Julian Ip; Ana Moser; Peter Stålberg; Bruce G. Robinson; K. Alexander Iwen; Henning Dralle; Martin K. Walz; Hendrik Lehnert; Stan B. Sidhu; Celso E. Gomez-Sanchez; Per Hellman; Peyman Björklund

Primary aldosteronism (PA) is the most common cause of secondary hypertension with a prevalence of 5–10% in unreferred hypertensive patients. Aldosterone producing adenomas (APAs) constitute a large proportion of PA cases and represent a surgically correctable form of the disease. The WNT signaling pathway is activated in APAs. In other tumors, a frequent cause of aberrant WNT signaling is mutation in the CTNNB1 gene coding for β-catenin. Our objective was to screen for CTNNB1 mutations in a well-characterized cohort of 198 APAs. Somatic CTNNB1 mutations were detected in 5.1% of the tumors, occurring mutually exclusive from mutations in KCNJ5, ATP1A1, ATP2B3 and CACNA1D. All of the observed mutations altered serine/threonine residues in the GSK3β binding domain in exon 3. The mutations were associated with stabilized β-catenin and increased AXIN2 expression, suggesting activation of WNT signaling. By CYP11B2 mRNA expression, CYP11B2 protein expression, and direct measurement of aldosterone in tumor tissue, we confirmed the ability for aldosterone production. This report provides compelling evidence that aberrant WNT signaling caused by mutations in CTNNB1 occur in APAs. This also suggests that other mechanisms that constitutively activate the WNT pathway may be important in APA formation.


Endocrine-related Cancer | 2015

Novel somatic mutations and distinct molecular signature in aldosterone-producing adenomas

Tobias Åkerström; Holger S. Willenberg; Kenko Cupisti; Julian Ip; Samuel Backman; Ana Moser; Rajani Maharjan; Bruce G. Robinson; K. Alexander Iwen; Henning Dralle; Cristina Volpe; Johan Botling; Peter Stålberg; Gunnar Westin; Martin K. Walz; Hendrik Lehnert; Stan B. Sidhu; Jan Zedenius; Peyman Björklund; Per Hellman

Aldosterone-producing adenomas (APAs) are found in 1.5-3.0% of hypertensive patients in primary care and can be cured by surgery. Elucidation of genetic events may improve our understanding of these tumors and ultimately improve patient care. Approximately 40% of APAs harbor a missense mutation in the KCNJ5 gene. More recently, somatic mutations in CACNA1D, ATP1A1 and ATP2B3, also important for membrane potential/intracellular Ca(2) (+) regulation, were observed in APAs. In this study, we analyzed 165 APAs for mutations in selected regions of these genes. We then correlated mutational findings with clinical and molecular phenotype using transcriptome analysis, immunohistochemistry and semiquantitative PCR. Somatic mutations in CACNA1D in 3.0% (one novel mutation), ATP1A1 in 6.1% (six novel mutations) and ATP2B3 in 3.0% (two novel mutations) were detected. All observed mutations were located in previously described hotspot regions. Patients with tumors harboring mutations in CACNA1D, ATP1A1 and ATP2B3 were operated at an older age, were more often male and had tumors that were smaller than those in patients with KCNJ5 mutated tumors. Microarray transcriptome analysis segregated KCNJ5 mutated tumors from ATP1A1/ATP2B3 mutated tumors and those without mutation. We observed significant transcription upregulation of CYP11B2, as well as the previously described glomerulosa-specific gene NPNT, in ATP1A1/ATP2B3 mutated tumors compared to KCNJ5 mutated tumors. In summary, we describe novel somatic mutations in proteins regulating the membrane potential/intracellular Ca(2) (+) levels, and also a distinct mRNA and clinical signature, dependent on genetic alteration.


PLOS ONE | 2014

Integrative Genetic Characterization and Phenotype Correlations in Pheochromocytoma and Paraganglioma Tumours

Joakim Crona; Margareta Nordling; Rajani Maharjan; Dan Granberg; Peter Stålberg; Per Hellman; Peyman Björklund

Background About 60% of Pheochromocytoma (PCC) and Paraganglioma (PGL) patients have either germline or somatic mutations in one of the 12 proposed disease causing genes; SDHA, SDHB, SDHC, SDHD, SDHAF2, VHL, EPAS1, RET, NF1, TMEM127, MAX and H-RAS. Selective screening for germline mutations is routinely performed in clinical management of these diseases. Testing for somatic alterations is not performed on a regular basis because of limitations in interpreting the results. Aim The purpose of the study was to investigate genetic events and phenotype correlations in a large cohort of PCC and PGL tumours. Methods A total of 101 tumours from 89 patients with PCC and PGL were re-sequenced for a panel of 10 disease causing genes using automated Sanger sequencing. Selected samples were analysed with Multiplex Ligation-dependent Probe Amplification and/or SNParray. Results Pathogenic genetic variants were found in tumours from 33 individual patients (37%), 14 (16%) were discovered in constitutional DNA and 16 (18%) were confirmed as somatic. Loss of heterozygosity (LOH) was observed in 1/1 SDHB, 11/11 VHL and 3/3 NF1-associated tumours. In patients with somatic mutations there were no recurrences in contrast to carriers of germline mutations (P = 0.022). SDHx/VHL/EPAS1 associated cases had higher norepinephrine output (P = 0.03) and lower epinephrine output (P<0.001) compared to RET/NF1/H-RAS cases. Conclusion Somatic mutations are frequent events in PCC and PGL tumours. Tumour genotype may be further investigated as prognostic factors in these diseases. Growing evidence suggest that analysis of tumour DNA could have an impact on the management of these patients.


Clinical Cancer Research | 2015

Spatiotemporal Heterogeneity Characterizes the Genetic Landscape of Pheochromocytoma and Defines Early Events in Tumorigenesis.

Joakim Crona; Samuel Backman; Rajani Maharjan; Markus Mayrhofer; Peter Stålberg; Anders Isaksson; Per Hellman; Peyman Björklund

Purpose: Pheochromocytoma and paraganglioma (PPGL) patients display heterogeneity in the clinical presentation and underlying genetic cause. The degree of inter- and intratumor genetic heterogeneity has not yet been defined. Experimental Design: In PPGLs from 94 patients, we analyzed LOH, copy-number variations, and mutation status of SDHA, SDHB, SDHC, SDHD, SDHAF2, VHL, EPAS1, NF1, RET, TMEM127, MAX, and HRAS using high-density SNP array and targeted deep sequencing, respectively. Genetic heterogeneity was determined through (i) bioinformatics analysis of individual samples that estimated absolute purity and ploidy from SNP array data and (ii) comparison of paired tumor samples that allowed reconstruction of phylogenetic trees. Results: Mutations were found in 61% of the tumors and correlated with specific patterns of somatic copy-number aberrations (SCNA) and degree of nontumoral cell admixture. Intratumor genetic heterogeneity was observed in 74 of 136 samples using absolute bioinformatics estimations and in 22 of 24 patients by comparison of paired samples. In addition, a low genetic concordance was observed between paired primary tumors and distant metastases. This allowed for reconstructing the life history of individual tumors, identifying somatic mutations as well as copy-number loss of 3p and 11p (VHL subgroup), 1p (Cluster 2), and 17q (NF1 subgroup) as early events in PPGL tumorigenesis. Conclusions: Genomic landscapes of PPGL are specific to mutation subtype and characterized by genetic heterogeneity both within and between tumor lesions of the same patient. Clin Cancer Res; 21(19); 4451–60. ©2015 AACR.


Scientific Reports | 2017

Global DNA Methylation Analysis Identifies Two Discrete clusters of Pheochromocytoma with Distinct Genomic and Genetic Alterations

Samuel Backman; Rajani Maharjan; Alberto Falk-Delgado; Joakim Crona; Kenko Cupisti; Peter Stålberg; Per Hellman; Peyman Björklund

Pheochromocytomas and paragangliomas (PPGLs) are rare and frequently heritable neural-crest derived tumours arising from the adrenal medulla or extra-adrenal chromaffin cells respectively. The majority of PPGL tumours are benign and do not recur with distant metastases. However, a sizeable fraction of these tumours secrete vasoactive catecholamines into the circulation causing a variety of symptoms including hypertension, palpitations and diaphoresis. The genetic landscape of PPGL has been well characterized and more than a dozen genes have been described as recurrently mutated. Recent studies of DNA-methylation have revealed distinct clusters of PPGL that share DNA methylation patterns and driver mutations, as well as identified potential biomarkers for malignancy. However, these findings have not been adequately validated in independent cohorts. In this study we use an array-based genome-wide approach to study the methylome of 39 PPGL and 4 normal adrenal medullae. We identified two distinct clusters of tumours characterized by different methylation patterns and different driver mutations. Moreover, we identify genes that are differentially methylated between tumour subcategories, and between tumours and normal tissue.


Hormone and Metabolic Research | 2014

Exome Sequencing and CNV Analysis on Chromosome 18 in Small Intestinal Neuroendocrine Tumors: Ruling Out a Suspect?

A. Delgado Verdugo; Joakim Crona; Rajani Maharjan; Per Hellman; Gunnar Westin; Peyman Björklund

The genetic background in small intestinal neuroendocrine tumors is poorly understood, but several studies have revealed numerical imbalances. Loss of one copy of chromosome 18 is the most frequent genetic aberration in this tumor type, which indirectly suggests that a driver mutation may be present in the remaining allele. The aim of this study was to evaluate the mutation status on chromosome 18 in small intestinal neuroendocrine tumors. DNAs from 7 small intestinal neuroendocrine tumors were subjected to whole exome capture, followed by next generation sequencing and high resolution SNP array followed by copy number variation analysis. Exome capture sequencing generated an average coverage of 50.6-138.2. Only 19 genes were covered less than 8X. No tumor-specific somatic mutation was identified. Genomic profiling revealed loss of chromosome 18 in 5 out of 7 small intestinal neuroendocrine tumors and a number of other aberrancies. Loss of chromosome 18 is the most frequent genetic aberration in small intestinal neuroendocrine tumors, but no evidence for eventual mutations in the remaining allele. This suggests involvement of other mechanisms than point mutations in small intestinal neuroendocrine tumors tumorigenesis.


Scientific Reports | 2018

Comprehensive analysis of CTNNB1 in adrenocortical carcinomas: Identification of novel mutations and correlation to survival.

Rajani Maharjan; Samuel Backman; Tobias Åkerström; Per Hellman; Peyman Björklund

The Wnt/β-Catenin signaling pathway is one of the most frequently altered pathways in adrenocortical carcinomas (ACCs). The aim of this study was to investigate the status of Wnt/β-Catenin signaling pathway by analyzing the expression level of β-Catenin and the mutational status of APC, AXIN2, CTNNB1, and ZNRF3 in ACCs. Mutations in APC, CTNNB1, ZNRF3 and homozygous deletions in ZNRF3 were observed in 3.8% (2/52), 11.5% (6/52), 1.9% (1/52) and 17.3% (9/52) of the cohort respectively. Novel interstitial deletions in CTNNB1 spanning intron 1 to exon 3/intron 3 were also found in 7.7% (4/52) of the tumours. All the observed alterations were mutually exclusive. Nuclear accumulation of β-Catenin, increased expression of Cyclin D1 and significantly higher expression of AXIN2 (p = 0.0039), ZNRF3 (p = 0.0032) and LEF1(p = 0.0090) observed in the tumours harbouring the deletion in comparison to tumours without CTNNB1 mutation demonstrates that the truncated β-Catenin is functionally active and erroneously activates the downstream targets. Significantly lower overall survival rate in patients with tumours harbouring alterations in APC/CTNNB1/ZNRF3 in comparison to those without mutation was observed. In conclusion, the discovery of novel large deletions in addition to the point mutations in CTNNB1 infers that activation of Wnt/β-Catenin pathway via alterations in CTNNB1 occurs frequently in ACCs. We also confirm that alterations in Wnt/β-Catenin signaling pathway members have a negative effect on overall survival of patients.


Familial Cancer | 2014

MAX mutations status in Swedish patients with pheochromocytoma and paraganglioma tumours

Joakim Crona; Rajani Maharjan; Alberto Delgado Verdugo; Peter Stålberg; Dan Granberg; Per Hellman; Peyman Björklund


Archive | 2017

Integrated Molecular Characterization of Benign Cortisol Producing Adenomas Defines Two Distinct Clusters.

Rajani Maharjan; Tobias Åkerström; Samuel Backman; Per Hellman; Peyman Björklund

Collaboration


Dive into the Rajani Maharjan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kenko Cupisti

University of Düsseldorf

View shared research outputs
Researchain Logo
Decentralizing Knowledge