Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rajarajan A. Thandavarayan is active.

Publication


Featured researches published by Rajarajan A. Thandavarayan.


Nutrition & Metabolism | 2011

Curcumin ameliorates macrophage infiltration by inhibiting NF-κB activation and proinflammatory cytokines in streptozotocin induced-diabetic nephropathy

Vivian Soetikno; Flori R. Sari; Punniyakoti T. Veeraveedu; Rajarajan A. Thandavarayan; Meilei Harima; Vijayakumar Sukumaran; Arun Prasath Lakshmanan; Kenji Suzuki; Hiroshi Kawachi; Kenichi Watanabe

BackgroundChronic inflammation plays an important role in the progression of diabetic nephropathy (DN) and that the infiltration of macrophages in glomerulus has been implicated in the development of glomerular injury. We hypothesized that the plant polyphenolic compound curcumin, which is known to exert potent anti-inflammatory effect, would ameliorate macrophage infiltration in streptozotocin (STZ)-induced diabetic rats.MethodsDiabetes was induced with STZ (55 mg/kg) by intraperitoneal injection in rats. Three weeks after STZ injection, rats were divided into three groups, namely, control, diabetic, and diabetic treated with curcumin at 100 mg/kg/day, p.o., for 8 weeks. The rats were sacrificed 11 weeks after induction of diabetes. The excised kidney was used to assess macrophage infiltration and expression of various inflammatory markers.ResultsAt 11 weeks after STZ injection, diabetic rats exhibited renal dysfunction, as evidenced by reduced creatinine clearance, increased blood glucose, blood urea nitrogen and proteinuria, along with marked reduction in the body weight. All of these abnormalities were significantly reversed by curcumin. Hyperglycemia induced the degradation of IκBα and NF-κB activation and as a result increased infiltration of macrophages (52%) as well as increased proinflammatory cytokines: TNF-α and IL-1β. Curcumin treatment significantly reduced macrophage infiltration in the kidneys of diabetic rats, suppressed the expression of above proinflammatory cytokines and degradation of IκBα. In addition, curcumin treatment also markedly decreased ICAM-1, MCP-1 and TGF-β1 protein expression. Moreover, at nuclear level curcumin inhibited the NF-κB activity.ConclusionOur results suggested that curcumin treatment protect against the development of DN in rats by reducing macrophage infiltration through the inhibition of NF-κB activation in STZ-induced diabetic rats.


European Journal of Pharmaceutical Sciences | 2012

Curcumin prevents diabetic cardiomyopathy in streptozotocin-induced diabetic rats: Possible involvement of PKC–MAPK signaling pathway

Vivian Soetikno; Flori R. Sari; Vijayakumar Sukumaran; Arun Prasath Lakshmanan; Sayaka Mito; Meilei Harima; Rajarajan A. Thandavarayan; Kenji Suzuki; Masaki Nagata; Ritsuo Takagi; Kenichi Watanabe

The development of diabetic cardiomyopathy is accompanied with a high membrane-bound protein kinase C (PKC) levels. Curcumin is a naturally occurring compound which is known to inhibit PKC activity. However, the effects of curcumin on ameliorating diabetic cardiomyopathy are still undefined. We evaluated whether curcumin treatment is associated with the modulation of PKC-α and -β₂-mitogen-activated protein kinase (MAPK) pathway in experimental diabetic cardiomyopathy. Diabetes was induced in male Sprague-Dawley rats by streptozotocin (STZ). Curcumin (100mg/kg/day) was started three weeks after STZ injection and was given for 8 weeks. We demonstrate that curcumin significantly prevented diabetes-induced translocation of PKC-α and -β2 to membranous fraction and diabetes-induced increased phosphorylation of p38MAPK and extracellular regulated-signal kinase (ERK)1/2 in left ventricular tissues of diabetic rats. Curcumin treatment also markedly decreased NAD(P)H oxidase subunits (p67phox, p22phox, gp91phox), growth factors (transforming growth factor-β, osteopontin) and myocyte enhancer factor-2 protein expression as well as inhibited NF-κB activity at nuclear level. Furthermore, curcumin decreased the mRNA expression of transcriptional coactivator p300 and atrial natriuretic peptide, decreased accumulation of ECM protein and reversed the increment of superoxide production in left ventricular tissues, as evidenced by dihydroethidium staining. It is also significantly lowered plasma glucose and attenuated oxidative stress, as determined by lipid peroxidation and activity of anti-oxidant enzyme, and as a result attenuated cardiomyocyte hypertrophy, myocardial fibrosis and left ventricular dysfunction. Taken together, it is suggested that curcumin by inhibiting PKC-α and -β₂-MAPK pathway may be useful as an adjuvant therapy for the prevention of diabetic cardiomyopathy.


American Journal of Physiology-heart and Circulatory Physiology | 2009

Dominant-negative p38α mitogen-activated protein kinase prevents cardiac apoptosis and remodeling after streptozotocin-induced diabetes mellitus

Rajarajan A. Thandavarayan; Kenichi Watanabe; Meilei Ma; Narasimman Gurusamy; Punniyakoti T. Veeraveedu; Tetsuya Konishi; Shaosong Zhang; Anthony J. Muslin; Makoto Kodama; Yoshifusa Aizawa

The p38 mitogen-activated protein kinase (MAPK) is activated during heart diseases that might be associated with myocardial damage and cardiac remodeling process. Diabetic cardiomyopathy is associated with increased oxidative stress and inflammation. The purpose of this study was to investigate the role of p38alpha MAPK after experimental diabetes by using transgenic (TG) mice with cardiac-specific expression of a dominant-negative mutant form of p38alpha MAPK. The elevation of blood glucose was comparable between the nontransgenic (NTG) and TG mice. The expression of phospho-p38 MAPK and phospho-MAPK-activated protein kinase 2 levels were significantly suppressed in TG mice heart than in NTG mice after diabetes induction. Left ventricular (LV) dimension in systole was smaller, and the percent fractional shortening was higher in diabetic TG mice compared with diabetic NTG mice. In addition, diabetic TG mice had reduced cardiac myocyte diameter, content of cardiac fibrosis, LV tissue expressions of atrial natriuretic peptide, transforming growth factor beta1, and collagen III compared with diabetic NTG mice. Moreover, LV expression of NADPH oxidase subunits, p22(phox), p67(phox), gp91(phox), and Nox4, reactive oxygen species and lipid peroxidation levels were significantly increased in diabetic NTG mice, but not in diabetic TG mice. Furthermore, myocardial apoptosis, the number of caspase-3-positive cells, and the downregulation of antiapoptotic protein Bcl-X(L) were less in diabetic TG mice compared with diabetic NTG mice. In conclusion, our data establish that p38alpha MAPK activity is required for cardiac remodeling after diabetes induction and suggest that p38alpha MAPK may promote cardiomyocyte apoptosis by downregulation of Bcl-X(L).


Biochemical Pharmacology | 2008

14-3-3 protein regulates Ask1 signaling and protects against diabetic cardiomyopathy.

Rajarajan A. Thandavarayan; Kenichi Watanabe; Meilei Ma; Punniyakoti T. Veeraveedu; Narasimman Gurusamy; Suresh S. Palaniyandi; Shaosong Zhang; Anthony J. Muslin; Makoto Kodama; Yoshifusa Aizawa

Mammalian 14-3-3 proteins are dimeric phosphoserine-binding proteins that participate in signal transduction and regulate several aspects of cellular biochemistry. Diabetic cardiomyopathy is associated with increased oxidative stress and inflammation. In order to study the pathogenic changes underlying diabetic cardiomyopathy, we examined the role of 14-3-3 protein and apoptosis signal-regulating kinase 1 (Ask1) signaling by using transgenic mice with cardiac-specific expression of a dominant-negative 14-3-3eta protein mutant (DN 14-3-3eta) after induction of experimental diabetes. The elevation in blood glucose was comparable between wild type (WT) and DN 14-3-3eta mice. However, a marked downregulation of thioredoxin reductase was apparent in DN 14-3-3eta mice compared to WT mice after induction of diabetes. Significant Ask1 activation in DN 14-3-3eta after diabetes induction was evidenced by pronounced de-phosphorylation at Ser-967 and intense immunofluorescence observed in left ventricular (LV) sections. Echocardiographic analysis revealed that cardiac functions were notably impaired in diabetic DN 14-3-3eta mice compared to diabetic WT mice. Marked increases in myocardial apoptosis, cardiac hypertrophy, and fibrosis were observed with a corresponding up-regulation of atrial natriuretic peptide and galectin-3, as well as a downregulation of sarcoendoplasmic reticulum Ca2+ ATPase2 expression. Furthermore, diabetic DN 14-3-3eta mice displayed significant reductions of platelet-endothelial cell adhesion molecule-1 staining as well as endothelial nitric acid synthase and vascular endothelial growth factor expression. In conclusion, our data suggests that enhancement of 14-3-3 protein could provide a novel therapeutic strategy against hyperglycemia-induced left ventricular dysfunction and can limit the progression of diabetic cardiomyopathy by regulating Ask1 signaling.


Molecular Nutrition & Food Research | 2011

Curcumin attenuates diabetic nephropathy by inhibiting PKC‐α and PKC‐β1 activity in streptozotocin‐induced type I diabetic rats

Vivian Soetikno; Kenichi Watanabe; Flori R. Sari; Meilei Harima; Rajarajan A. Thandavarayan; Punniyakoti T. Veeraveedu; Wawaimuli Arozal; Vijayakumar Sukumaran; Arun Prasath Lakshmanan; Somasundaram Arumugam; Kenji Suzuki

SCOPE We hypothesized that curcumin, a potent anti-oxidant, might be beneficial in ameliorating the development of diabetic nephropathy through inhibition of PKC-α and PKC-β1 activity-ERK1/2 pathway. METHODS AND RESULTS Diabetes was induced by a single intraperitoneal injection of streptozotocin (STZ) (55 mg/kg) in rats. Three weeks after STZ injection, rats were divided into three groups, namely, normal, diabetic and diabetic treated with curcumin at 100 mg/kg/day, p.o., for 8 wk. At 11 wk after STZ injection, diabetic rats exhibited renal dysfunction, as evidenced by reduced creatinine clearance, increased blood urea nitrogen (BUN) and proteinuria, marked increases in lipid peroxidation, NOX4 and p67phox and decrease in anti-oxidant enzyme. All of these abnormalities were significantly reversed by curcumin. Furthermore, the high-glucose-induced PKC-α and PKC-β1 activities and phosphorylated ERK1/2 was significantly diminished by curcumin. Curcumin also attenuated the expression of TGF-β1, CTGF, osteopontin, p300 and ECM proteins such as fibronectin and type IV collagen. The high-glucose-induced expression of VEGF and its receptor VEGF receptor II (flk-1) was also ameliorated by curcumin. CONCLUSION These results prove that curcumin produces dual blockade of both PKC-α and PKC-β1 activities, which suggests that curcumin is a potential adjuvant therapy for the prevention and treatment of diabetic nephropathy.


Free Radical Research | 2011

Telmisartan attenuates oxidative stress and renal fibrosis in streptozotocin induced diabetic mice with the alteration of angiotensin-(1-7) mas receptor expression associated with its PPAR-γ agonist action.

Arun Prasath Lakshmanan; Kenichi Watanabe; Rajarajan A. Thandavarayan; Flori R. Sari; Meilei Harima; Vijayasree V. Giridharan; Vivian Soetikno; Makoto Kodama; Yoshifusa Aizawa

Abstract The beneficial effects of telmisartan on Angiotensin (Ang)-II mediated oxidative stress and renal fibrosis in streptozotocin (STZ)-induced diabetic nephropathy (DN) were studied. Thirty mice were divided into normal (NG), STZ-induced diabetic (DG) and telmisartan-treated diabetic (TG) groups. Compared with NG mice, DG mice showed significant up-regulations of AT-1R, TGF-β1, p-p38MAPK, p-MAPKAPK-2, p-Akt, p47phox, p67phox, gp91phox protein and collagen-III and all of these were significantly reversed in TG mice. The down-regulated protein expression of Ang-(1–7) mas receptor, ACE-2, PPAR-γ and PGC-1α were observed in DG mice and a significant up-regulation effect of telmisartan has been seen in the TG mice. Furthermore, TG mice showed reduced expression of fibronectin, production of superoxide radical as well as renal hypertrophy and fibrosis when compared with DG mice. These findings suggest that Ang-II plays a significant role in DN and telmisartan would be beneficial in reducing oxidative stress and fibrosis in STZ-induced DN.


Current Cardiology Reviews | 2010

Role of differential signaling pathways and oxidative stress in diabetic cardiomyopathy.

Kenichi Watanabe; Rajarajan A. Thandavarayan; Meilei Harima; Flori R. Sari; Narasimman Gurusamy; Punniyakoti T. Veeraveedu; Sayaka Mito; Wawaimuli Arozal; Vijayakumar Sukumaran; Arun Prasath Laksmanan; Vivian Soetikno; Makoto Kodama; Yoshifusa Aizawa

Diabetes mellitus increases the risk of heart failure independently of underlying coronary artery disease, and many believe that diabetes leads to cardiomyopathy. The underlying pathogenesis is partially understood. Several factors may contribute to the development of cardiac dysfunction in the absence of coronary artery disease in diabetes mellitus. There is growing evidence that excess generation of highly reactive free radicals, largely due to hyperglycemia, causes oxidative stress, which further exacerbates the development and progression of diabetes and its complications. Hyperglycemia-induced oxidative stress is a major risk factor for the development of micro-vascular pathogenesis in the diabetic myocardium, which results in myocardial cell death, hypertrophy, fibrosis, abnormalities of calcium homeostasis and endothelial dysfunction. Diabetes-mediated biochemical changes show cross-interaction and complex interplay culminating in the activation of several intracellular signaling molecules. Diabetic cardiomyopathy is characterized by morphologic and structural changes in the myocardium and coronary vasculature mediated by the activation of various signaling pathways. This review focuses on the oxidative stress and signaling pathways in the pathogenesis of the cardiovascular complications of diabetes, which underlie the development and progression of diabetic cardiomyopathy.


Free Radical Research | 2011

Prevention of scopolamine-induced memory deficits by schisandrin B, an antioxidant lignan from Schisandra chinensis in mice

Vijayasree V. Giridharan; Rajarajan A. Thandavarayan; Shinji Sato; Kam Ming Ko; Tetsuya Konishi

Abstract The preventive effect of schisandrin B (Sch B), an antioxidant ingredient of Schisandra chinensis, was studied on scopolamine-induced dementia in mouse. Scopolamine developed oxidative stress in the brain with the decreased levels of antioxidant enzymes and increased nitrite level. At the same time, a significant impairment of learning and memory occurred when evaluated by passive avoidance task (PAT) and Morris water maze (MWM) with concomitant increase of acetylcholinesterase (AChE) activity and decreased acetylcholine levels. Pre-treatment by Sch B (10, 25, 50 mg/kg) effectively prevented scopolamine-induced oxidative stress and improved behavioural tasks. Further, the scopolamine-induced increase in AChE activity was significantly suppressed and the level of acetylcholine was maintained as normal by Sch B treatment. These results suggest that Sch B have protective function against cerebral functional defects such as dementia not only by antioxidant prevention but also exerting its potent cognitive-enhancing activity through modulation of acetylcholine level.


Toxicology | 2010

Protective effect of carvedilol on daunorubicin-induced cardiotoxicity and nephrotoxicity in rats

Wawaimuli Arozal; Kenichi Watanabe; Punniyakoti T. Veeraveedu; Meilei Ma; Rajarajan A. Thandavarayan; Vijayakumar Sukumaran; Kenji Suzuki; Makoto Kodama; Yoshifusa Aizawa

Daunorubicin (DNR) is one of the anthracycline anti-tumor agents widely used in the treatment of acute myeloid leukemia. However, the clinical use of DNR has been limited by its undesirable systemic toxicity, especially in the heart and kidney. This study was designed to test the effectiveness of carvedilol, a nonselective beta-blocker against DNR-induced cardiotoxicity and nephrotoxicity. Rats were treated with a cumulative dose of 9 mg/kg body weight DNR (i.v.). Carvedilol was administered orally every day for 6 weeks. DNR rats showed cardiac and nephrotoxicities as evidenced by worsening cardiac and kidney functions, which were evaluated by hemodynamic and echocardiographic studies, and by measuring protein in urine, levels of urea and creatinine in serum, lipid profiles, malondialdeyde level and the total level of glutathione peroxidase activity in both heart and kidney tissues. These changes were reversed by treatment with carvedilol, which resulted in significant improvement in the cardio-renal function. Furthermore, carvedilol down-regulated matrix metalloproteinase-2 expression in the heart, increased nephrin expression in the kidney, and attenuated the increased protein expression of NADPH oxidase subunits in heart and kidney. Moreover, carvedilol reduced myocardial and renal apoptosis and improved the histopathological changes in heart and kidney induced by DNR. In conclusion, the present study demonstrated a beneficial effect of carvedilol treatment in the prevention of DNR-induced cardiotoxicity and nephrotoxicity by reversing the oxidative stress and apoptosis.


Cellular Physiology and Biochemistry | 2011

Depletion of 14-3-3 Protein Exacerbates Cardiac Oxidative Stress, Inflammation and Remodeling Process via Modulation of MAPK/NF-ĸB Signaling Pathways after Streptozotocin-induced Diabetes Mellitus

Rajarajan A. Thandavarayan; Vijayasree V. Giridharan; Flori R. Sari; Somasundaram Arumugam; Punniyakoti T. Veeraveedu; Ganesh N. Pandian; Suresh S. Palaniyandi; Meilei Ma; Kenji Suzuki; Narasimman Gurusamy; Kenichi Watanabe

Diabetic cardiomyopathy is associated with increased oxidative stress and inflammation. Mammalian 14-3-3 proteins are dimeric phosphoserine-binding proteins that participate in signal transduction and regulate several aspects of cellular biochemistry. The aim of the study presented here was to clarify the role of 14-3-3 protein in the mitogen activated protein kinase (MAPK) and nuclear factor-kB (NF-ĸB) signaling pathway after experimental diabetes by using transgenic mice with cardiac-specific expression of a dominant-negative 14-3-3 protein mutant (DN 14-3-3). Significant p-p38 MAPK activation in DN 14-3-3 mice compared to wild type mice (WT) after diabetes induction and with a corresponding up regulation of its downstream effectors, p-MAPK activated protein kinase 2 (MAPKAPK-2). Marked increases in cardiac hypertrophy, fibrosis and inflammation were observed with a corresponding up-regulation of atrial natriuretic peptide, osteopontin, connective tissue growth factor, tumor necrosis factor α, interleukin (IL)-1β, IL-6 and cellular adhesion molecules. Moreover, reactive oxygen species, left ventricular expression of NADPH oxidase subunits, p22 phox, p67 phox, and Nox4, and lipid peroxidation levels were significantly increased in diabetic DN 14-3-3mice compared to diabetic WT mice. Furthermore, myocardial NF-ĸB activation, inhibitor of kappa B-α degradation and mRNA expression of proinflammatory cytokines were significantly increased in DN 14-3-3 mice compared to WT mice after diabetes induction. In conclusion, our data suggests that depletion of 14-3-3 protein induces cardiac oxidative stress, inflammation and remodeling after experimental diabetes induction mediated through p38 MAPK, MAPKAPK-2 and NF-ĸB signaling.

Collaboration


Dive into the Rajarajan A. Thandavarayan's collaboration.

Top Co-Authors

Avatar

Kenichi Watanabe

Niigata University of Pharmacy and Applied Life Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Flori R. Sari

Niigata University of Pharmacy and Applied Life Sciences

View shared research outputs
Top Co-Authors

Avatar

Punniyakoti T. Veeraveedu

Niigata University of Pharmacy and Applied Life Sciences

View shared research outputs
Top Co-Authors

Avatar

Meilei Harima

Niigata University of Pharmacy and Applied Life Sciences

View shared research outputs
Top Co-Authors

Avatar

Somasundaram Arumugam

Niigata University of Pharmacy and Applied Life Sciences

View shared research outputs
Top Co-Authors

Avatar

Vijayasree V. Giridharan

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar

Vijayakumar Sukumaran

Niigata University of Pharmacy and Applied Life Sciences

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge