Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rajarshi Guha is active.

Publication


Featured researches published by Rajarshi Guha.


Cancer Cell | 2012

Exploiting Synthetic Lethality for the Therapy of ABC Diffuse Large B Cell Lymphoma

Yibin Yang; Arthur L. Shaffer; N. C. Tolga Emre; Michele Ceribelli; Meili Zhang; George E. Wright; Wenming Xiao; John Powell; John Platig; Holger Kohlhammer; Ryan M. Young; Hong Zhao; Yandan Yang; Weihong Xu; Joseph J. Buggy; Sriram Balasubramanian; Lesley A. Mathews; Paul Shinn; Rajarshi Guha; Marc Ferrer; Craig J. Thomas; Thomas A. Waldmann; Louis M. Staudt

Knowledge of oncogenic mutations can inspire therapeutic strategies that are synthetically lethal, affecting cancer cells while sparing normal cells. Lenalidomide is an active agent in the activated B cell-like (ABC) subtype of diffuse large B cell lymphoma (DLBCL), but its mechanism of action is unknown. Lenalidomide kills ABC DLBCL cells by augmenting interferon β (IFNβ) production, owing to the oncogenic MYD88 mutations in these lymphomas. In a cereblon-dependent fashion, lenalidomide downregulates IRF4 and SPIB, transcription factors that together prevent IFNβ production by repressing IRF7 and amplify prosurvival NF-κB signaling by transactivating CARD11. Blockade of B cell receptor signaling using the BTK inhibitor ibrutinib also downregulates IRF4 and consequently synergizes with lenalidomide in killing ABC DLBCLs, suggesting attractive therapeutic strategies.


Proceedings of the National Academy of Sciences of the United States of America | 2014

High-throughput combinatorial screening identifies drugs that cooperate with ibrutinib to kill activated B-cell-like diffuse large B-cell lymphoma cells.

Lesley A. Mathews Griner; Rajarshi Guha; Paul Shinn; Ryan M. Young; Jonathan M. Keller; Dongbo Liu; Ian S. Goldlust; Adam Yasgar; Crystal McKnight; Matthew B. Boxer; Damien Y. Duveau; Jian-kang Jiang; Sam Michael; Tim Mierzwa; Wenwei Huang; Martin J. Walsh; Bryan T. Mott; Paresma R. Patel; William Leister; David J. Maloney; Christopher A. LeClair; Ganesha Rai; Ajit Jadhav; Brian D. Peyser; Christopher P. Austin; Scott E. Martin; Anton Simeonov; Marc Ferrer; Louis M. Staudt; Craig J. Thomas

Significance The treatment of cancer is highly reliant on drug combinations. Next-generation, targeted therapeutics are demonstrating interesting single-agent activities in clinical trials; however, the discovery of companion drugs through iterative clinical trial-and-error is not a tenable mechanism to prioritize clinically important combinations for these agents. Herein we describe the results of a large, high-throughput combination screen of the Bruton’s tyrosine kinase inhibitor ibrutinib versus a library of nearly 500 approved and investigational drugs. Multiple ibrutinib combinations were discovered through this study that can be prioritized for clinical examination. The clinical development of drug combinations is typically achieved through trial-and-error or via insight gained through a detailed molecular understanding of dysregulated signaling pathways in a specific cancer type. Unbiased small-molecule combination (matrix) screening represents a high-throughput means to explore hundreds and even thousands of drug–drug pairs for potential investigation and translation. Here, we describe a high-throughput screening platform capable of testing compounds in pairwise matrix blocks for the rapid and systematic identification of synergistic, additive, and antagonistic drug combinations. We use this platform to define potential therapeutic combinations for the activated B-cell–like subtype (ABC) of diffuse large B-cell lymphoma (DLBCL). We identify drugs with synergy, additivity, and antagonism with the Bruton’s tyrosine kinase inhibitor ibrutinib, which targets the chronic active B-cell receptor signaling that characterizes ABC DLBCL. Ibrutinib interacted favorably with a wide range of compounds, including inhibitors of the PI3K-AKT-mammalian target of rapamycin signaling cascade, other B-cell receptor pathway inhibitors, Bcl-2 family inhibitors, and several components of chemotherapy that is the standard of care for DLBCL.


Science | 2011

Chemical genomic profiling for antimalarial therapies, response signatures and molecular targets

Jing Yuan; Ken Chih-Chien Cheng; Ronald L Johnson; Ruili Huang; Sittiporn Pattaradilokrat; Anna Liu; Rajarshi Guha; David A. Fidock; James Inglese; Thomas E. Wellems; Christopher P. Austin; Xin-zhuan Su

There are a limited number of ways that the malaria parasite can develop drug resistance. Malaria remains a devastating disease largely because of widespread drug resistance. New drugs and a better understanding of the mechanisms of drug action and resistance are essential for fulfilling the promise of eradicating malaria. Using high-throughput chemical screening and genome-wide association analysis, we identified 32 highly active compounds and genetic loci associated with differential chemical phenotypes (DCPs), defined as greater than or equal to fivefold differences in half-maximum inhibitor concentration (IC50) between parasite lines. Chromosomal loci associated with 49 DCPs were confirmed by linkage analysis and tests of genetically modified parasites, including three genes that were linked to 96% of the DCPs. Drugs whose responses mapped to wild-type or mutant pfcrt alleles were tested in combination in vitro and in vivo, which yielded promising new leads for antimalarial treatments.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Blockade of oncogenic IκB kinase activity in diffuse large B-cell lymphoma by bromodomain and extraterminal domain protein inhibitors

Michele Ceribelli; Priscilla N. Kelly; Arthur L. Shaffer; George W. Wright; Wenming Xiao; Yibin Yang; Lesley A. Mathews Griner; Rajarshi Guha; Paul Shinn; Jonathan M. Keller; Dongbo Liu; Paresma R. Patel; Marc Ferrer; Shivangi Joshi; Sujata Nerle; Peter Sandy; Emmanuel Normant; Craig J. Thomas; Louis M. Staudt

Significance The activated B-cell–like (ABC) subtype of diffuse large B-cell lymphoma (DLBCL) is an aggressive cancer that can only be cured in roughly 40% of cases. These malignant cells rely on the NF-κB signaling pathway for survival. Here, we report that genetic or pharmacologic interference with bromodomain and extraterminal domain (BET) chromatin proteins reduces NF-κB activity and ABC DLBCL viability. Unexpectedly, the mechanism involves inhibition of IκB kinase, the key cytoplasmic enzyme that activates the NF-κB pathway. The NF-κB pathway in ABC DLBCL is activated by B-cell receptor signaling, which can be blocked by the BTK kinase inhibitor ibrutinib. BET inhibitors synergized with ibrutinib to decrease growth of ABC DLBCL tumors in mouse models. BET inhibitors should be evaluated in ABC DLBCL clinical trials. In the activated B-cell–like (ABC) subtype of diffuse large B-cell lymphoma (DLBCL), NF-κB activity is essential for viability of the malignant cells and is sustained by constitutive activity of IκB kinase (IKK) in the cytoplasm. Here, we report an unexpected role for the bromodomain and extraterminal domain (BET) proteins BRD2 and BRD4 in maintaining oncogenic IKK activity in ABC DLBCL. IKK activity was reduced by small molecules targeting BET proteins as well as by genetic knockdown of BRD2 and BRD4 expression, thereby inhibiting downstream NF-κB–driven transcriptional programs and killing ABC DLBCL cells. Using a high-throughput platform to screen for drug–drug synergy, we observed that the BET inhibitor JQ1 combined favorably with multiple drugs targeting B-cell receptor signaling, one pathway that activates IKK in ABC DLBCL. The BTK kinase inhibitor ibrutinib, which is in clinical development for the treatment of ABC DLBCL, synergized strongly with BET inhibitors in killing ABC DLBCL cells in vitro and in a xenograft mouse model. These findings provide a mechanistic basis for the clinical development of BET protein inhibitors in ABC DLBCL, particularly in combination with other modulators of oncogenic IKK signaling.


Cancer Cell | 2013

Targeting IRAK1 as a Therapeutic Approach for Myelodysplastic Syndrome

Garrett Rhyasen; Lyndsey Bolanos; Jing Fang; Andres Jerez; Mark Wunderlich; Carmela Rigolino; Lesley A. Mathews; Marc Ferrer; Noel Southall; Rajarshi Guha; Jonathan M. Keller; Craig J. Thomas; Levi J. Beverly; Agostino Cortelezzi; Esther Oliva; Maria Cuzzola; Jaroslaw P. Maciejewski; James C. Mulloy; Daniel T. Starczynowski

Myelodysplastic syndromes (MDSs) arise from a defective hematopoietic stem/progenitor cell. Consequently, there is an urgent need to develop targeted therapies capable of eliminating the MDS-initiating clones. We identified that IRAK1, an immune-modulating kinase, is overexpressed and hyperactivated in MDSs. MDS clones treated with a small molecule IRAK1 inhibitor (IRAK1/4-Inh) exhibited impaired expansion and increased apoptosis, which coincided with TRAF6/NF-κB inhibition. Suppression of IRAK1, either by RNAi or with IRAK1/4-Inh, is detrimental to MDS cells, while sparing normal CD34(+) cells. Based on an integrative gene expression analysis, we combined IRAK1 and BCL2 inhibitors and found that cotreatment more effectively eliminated MDS clones. In summary, these findings implicate IRAK1 as a drugable target in MDSs.


Cancer Research | 2014

ATR Inhibitors VE-821 and VX-970 Sensitize Cancer Cells to Topoisomerase I Inhibitors by Disabling DNA Replication Initiation and Fork Elongation Responses

Rozenn Jossé; Scott E. Martin; Rajarshi Guha; Pinar Ormanoglu; Thomas D. Pfister; Philip Michael Reaper; Christopher S Barnes; Julie Jones; Peter Charlton; John Pollard; Joel Morris; James H. Doroshow; Yves Pommier

Camptothecin and its derivatives, topotecan and irinotecan, are specific topoisomerase I (Top1) inhibitors and potent anticancer drugs killing cancer cells by producing replication-associated DNA double-strand breaks, and the indenoisoquinoline LMP-400 (indotecan) is a novel Top1 inhibitor in clinical trial. To develop novel drug combinations, we conducted a synthetic lethal siRNA screen using a library that targets nearly 7,000 human genes. Depletion of ATR, the main transducer of replication stress, came as a top candidate gene for camptothecin synthetic lethality. Validation studies using ATR siRNA and the ATR inhibitor VE-821 confirmed marked antiproliferative synergy with camptothecin and even greater synergy with LMP-400. Single-cell analyses and DNA fiber combing assays showed that VE-821 abrogates the S-phase replication elongation checkpoint and the replication origin-firing checkpoint induced by camptothecin and LMP-400. As expected, the combination of Top1 inhibitors with VE-821 inhibited the phosphorylation of ATR and Chk1; however, it strongly induced γH2AX. In cells treated with the combination, the γH2AX pattern changed over time from the well-defined Top1-induced damage foci to an intense peripheral and diffuse nuclear staining, which could be used as response biomarker. Finally, the clinical derivative of VE-821, VX-970, enhanced the in vivo tumor response to irinotecan without additional toxicity. A key implication of our work is the mechanistic rationale and proof of principle it provides to evaluate the combination of Top1 inhibitors with ATR inhibitors in clinical trials.


Molecular Informatics | 2011

KNIME Workflow to Assess PAINS Filters in SMARTS Format. Comparison of RDKit and Indigo Cheminformatics Libraries.

Simon Saubern; Rajarshi Guha; Jonathan B. Baell

High-throughput screening is an increasingly popular approach to finding biologically active compounds. However, screening hit sets inevitably contain large numbers of compounds that have little likelihood of being developed into drugs. In order not to waste additional resources pursuing these leads, Baell and Holloway recently published a list of structural features to help identify problematic structures that generate frequent false positives across screening campaigns (pan-assay interference structures – PAINS). The work has generated considerable attention from industrial and academic communities. The structural features filter list was published in Sybyl Line Notation (SLN) format, a format only useable by the proprietary Sybyl software package. Efforts by Guha to convert these SLN filters to the SMARTS format, using the CACTVS toolkits (Xemistry, GmbH), so that the filters could be used in a broader range of software packages were recently published on his web site. As this was an automated conversion, concern has been expressed that these SMARTS filters will not deliver exactly the same structural matches as the original SLN filters, thereby including structures in a screening set already known to fail the PAINS filters. While there might be some mismatch between the SLN and SMARTS definitions for a pattern, we also note that different cheminformatics toolkits can make different assumptions about molecular structures. For example, different toolkits may have different assumptions for the aromaticity model, which can affect which molecules match an aromatic query. As a result of this, the SMARTS matching process using different toolkits, can sometimes lead to different results between each other as well as from the analysis performed using the original SLN filters. For example, Lagorce et al. found that it was necessary to manually adjust the SMARTS filters when used with the OpenBabel library in order to obtain the same matches as obtained when using the SLN filters. In addition, pre-processing options during import of the target structure list, such as aromatization, desalting, or protonation, might also be the cause of different results. Hence, we wished to make use of an open platform to test the SMARTS filters and allow the chemical community to benchmark different chemistry software packages in an intuitive manner. To this end, we chose the open source and freely available Konstanz Information Miner (KNIME http://knime.org). This is a data analysis platform consisting of a GUI workflow, or ‘pipeline’, interface containing several chemistry related nodes. Workflows can be exported and distributed freely to other users and work across the three platforms currently supported by KNIME (Linux, MacOS, Windows). KNIME is distributed with the Chemistry Development Kit (CDK) and, recently, the RDKit and Indigo software packages. KNIME can access additional chemistry software packages by use of its ‘external tool’ node, and a number of vendors provide nodes to access their proprietary software packages. However, a disadvantage of KNIME is that only basic settings and functions may be accessible for the included chemistry packages, as advanced functionality has been sacrificed for ease of use. Further, the distributed packages are often not the most recently available versions and may contain bugs that have already been corrected in more current versions. These shortcomings can be overcome by accessing recent versions of the packages using the built-in ‘external tool’ node, but this introduces an extra level of complexity for the user.


ACS Medicinal Chemistry Letters | 2012

Diversity-Oriented Synthesis Yields a Novel Lead for the Treatment of Malaria

Richard Heidebrecht; Carol Mulrooney; Christopher P. Austin; Robert Barker; Jennifer A. Beaudoin; Ken Chih-Chien Cheng; Eamon Comer; Sivaraman Dandapani; Justin Dick; Jeremy R. Duvall; Eric Ekland; David A. Fidock; Mark E. Fitzgerald; Michael A. Foley; Rajarshi Guha; Paul L. Hinkson; Martin Kramer; Amanda K Lukens; Daniela Masi; Lisa A. Marcaurelle; Xin-Zhuan Su; Craig J. Thomas; Michel Weiwer; Roger Wiegand; Dyann F. Wirth; Menghang Xia; Jing Yuan; Jinghua Zhao; Michelle Palmer; Benito Munoz

Here, we describe the discovery of a novel antimalarial agent using phenotypic screening of Plasmodium falciparum asexual blood-stage parasites. Screening a novel compound collection created using diversity-oriented synthesis (DOS) led to the initial hit. Structure–activity relationships guided the synthesis of compounds having improved potency and water solubility, yielding a subnanomolar inhibitor of parasite asexual blood-stage growth. Optimized compound 27 has an excellent off-target activity profile in erythrocyte lysis and HepG2 assays and is stable in human plasma. This compound is available via the molecular libraries probe production centers network (MLPCN) and is designated ML238.


RNA Biology | 2013

Large-scale screening identifies a novel microRNA, miR-15a-3p, which induces apoptosis in human cancer cell lines

Aliaksandr Druz; Yu-Chi Chen; Rajarshi Guha; Michael J. Betenbaugh; Scott E. Martin; Joseph Shiloach

MicroRNAs (miRNAs) have been found to be involved in cancer initiation, progression and metastasis and, as such, have been suggested as tools for cancer detection and therapy. In this work, a large-scale screening of the complete miRNA mimics library demonstrated that hsa-miR-15a-3p had a pro-apoptotic role in the following human cancer cells: HeLa, AsPc-1, MDA-MB-231, KB3, ME180, HCT-116 and A549. MiR-15a-3p is a novel member of the pro-apoptotic miRNA cluster, miR-15a/16, which was found to activate Caspase-3/7 and to cause viability loss in B/CMBA.Ov cells during preliminary screening. Subsequent microarrays and bioinformatics analyses identified the following four anti-apoptotic genes: bcl2l1, naip5, fgfr2 and mybl2 as possible targets for the mmu-miR-15a-3p in B/CMBA.Ov cells. Follow-up studies confirmed the pro-apoptotic role of hsa-miR-15a-3p in human cells by its ability to activate Caspase-3/7, to reduce cell viability and to inhibit the expression of bcl2l1 (bcl-xL) in HeLa and AsPc-1 cells. MiR-15-3p was also found to reduce viability in HEK293, MDA-MB-231, KB3, ME180, HCT-116 and A549 cell lines and, therefore, may be considered for apoptosis modulating therapies in cancers associated with high Bcl-xL expression (cervical, pancreatic, breast, lung and colorectal carcinomas). The capability of hsa-miR-15a-3p to induce apoptosis in these carcinomas may be dependent on the levels of Bcl-xL expression. The use of endogenous inhibitors of bcl-xL and other anti-apoptotic genes such as hsa-miR-15a-3p may provide improved options for apoptosis-modulating therapies in cancer treatment compared with the use of artificial antisense oligonucleotides.


Drug Discovery Today | 2016

Modelling of compound combination effects and applications to efficacy and toxicity: state-of-the-art, challenges and perspectives

Krishna C. Bulusu; Rajarshi Guha; Daniel J. Mason; Richard Lewis; Eugene N. Muratov; Yasaman Kalantar Motamedi; Murat Cokol; Andreas Bender

The development of treatments involving combinations of drugs is a promising approach towards combating complex or multifactorial disorders. However, the large number of compound combinations that can be generated, even from small compound collections, means that exhaustive experimental testing is infeasible. The ability to predict the behaviour of compound combinations in biological systems, whittling down the number of combinations to be tested, is therefore crucial. Here, we review the current state-of-the-art in the field of compound combination modelling, with the aim to support the development of approaches that, as we hope, will finally lead to an integration of chemical with systems-level biological information for predicting the effect of chemical mixtures.

Collaboration


Dive into the Rajarshi Guha's collaboration.

Top Co-Authors

Avatar

Craig J. Thomas

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Christopher P. Austin

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David A. Fidock

Columbia University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Xin-Zhuan Su

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge