Rajat Varma
New York University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rajat Varma.
Nature Immunology | 2004
Vigo Heissmeyer; Fernando Macian; Sin-Hyeog Im; Rajat Varma; Stefan Feske; K. Venuprasad; Hua Gu; Yun Cai Liu; Michael L. Dustin; Anjana Rao
Sustained calcium signaling induces a state of anergy or antigen unresponsiveness in T cells, mediated through calcineurin and the transcription factor NFAT. We show here that Ca2+-induced anergy is a multistep program that is implemented at least partly through proteolytic degradation of specific signaling proteins. Calcineurin increased mRNA and protein of the E3 ubiquitin ligases Itch, Cbl-b and GRAIL and induced expression of Tsg101, the ubiquitin-binding component of the ESCRT-1 endosomal sorting complex. Subsequent stimulation or homotypic cell adhesion promoted membrane translocation of Itch and the related protein Nedd4, resulting in degradation of two key signaling proteins, PKC-θ and PLC-γ1. T cells from Itch- and Cbl-b–deficient mice were resistant to anergy induction. Anergic T cells showed impaired calcium mobilization after TCR triggering and were unable to maintain a mature immunological synapse, instead showing late disorganization of the outer ring containing lymphocyte function–associated antigen 1. Our results define a complex molecular program that links gene transcription induced by calcium and calcineurin to a paradoxical impairment of signal transduction in anergic T cells.
Cell | 2007
Tasha N. Sims; Timothy J. Soos; Harry S. Xenias; Benjamin J. Dubin-Thaler; Jake M. Hofman; Janelle Waite; Thomas O. Cameron; V. Kaye Thomas; Rajat Varma; Chris H. Wiggins; Michael P. Sheetz; Dan R. Littman; Michael L. Dustin
The immunological synapse (IS) is a junction between the T cell and antigen-presenting cell and is composed of supramolecular activation clusters (SMACs). No studies have been published on naive T cell IS dynamics. Here, we find that IS formation during antigen recognition comprises cycles of stable IS formation and autonomous naive T cell migration. The migration phase is driven by PKCtheta, which is localized to the F-actin-dependent peripheral (p)SMAC. PKCtheta(-/-) T cells formed hyperstable IS in vitro and in vivo and, like WT cells, displayed fast oscillations in the distal SMAC, but they showed reduced slow oscillations in pSMAC integrity. IS reformation is driven by the Wiscott Aldrich Syndrome protein (WASp). WASp(-/-) T cells displayed normal IS formation but were unable to reform IS after migration unless PKCtheta was inhibited. Thus, opposing effects of PKCtheta and WASp control IS stability through pSMAC symmetry breaking and reformation.
Proceedings of the National Academy of Sciences of the United States of America | 2007
Yoshihisa Kaizuka; Adam D. Douglass; Rajat Varma; Michael L. Dustin; Ronald D. Vale
T cells interacting with antigen-presenting cells (APCs) form an “immunological synapse” (IS), a bulls-eye pattern composed of a central supramolecular activation cluster enriched with T cell receptors (TCRs) surrounded by a ring of adhesion molecules (a peripheral supramolecular activation cluster). The mechanism responsible for segregating TCR and adhesion molecules remains poorly understood. Here, we show that immortalized Jurkat T cells interacting with a planar lipid bilayer (mimicking an APC) will form an IS, thereby providing an accessible model system for studying the cell biological processes underlying IS formation. We found that an actin-dependent process caused TCR and adhesion proteins to cluster at the cell periphery, but these molecules appeared to segregate from one another at the earliest stages of microdomain formation. The TCR and adhesion microdomains attached to actin and were carried centripetally by retrograde flow. However, only the TCR microdomains penetrated into the actin-depleted cell center, whereas the adhesion microdomains appeared to be unstable without an underlying actin cytoskeleton. Our results reveal that TCR and adhesion molecules spatially partition from one another well before the formation of a mature IS and that differential actin interactions help to shape and maintain the final bulls-eye pattern of the IS.
Nature Immunology | 2007
Guy Shakhar; Rajat Varma; Janelle Waite; Thomas O. Cameron; Randall L Lindquist; Tanja A. Schwickert; Michel C. Nussenzweig; Michael L. Dustin
T cells survey antigen-presenting dendritic cells (DCs) by migrating through DC networks, arresting and maintaining contact with DCs for several hours after encountering high-potency complexes of peptide and major histocompatibility complex (pMHC), leading to T cell activation. The effects of low-potency pMHC complexes on T cells in vivo, however, are unknown, as is the mechanism controlling T cell arrest. Here we evaluated T cell responses in vivo to high-, medium- and low-potency pMHC complexes and found that regardless of potency, pMHC complexes induced upregulation of CD69, anergy and retention of T cells in lymph nodes. However, only high-potency pMHC complexes expressed by DCs induced calcium-dependent T cell deceleration and calcineurin-dependent anergy. The pMHC complexes of lower potency instead induced T cell anergy by a biochemically distinct process that did not affect T cell dynamics.
Immunity | 2010
Santosha Vardhana; Kaushik Choudhuri; Rajat Varma; Michael L. Dustin
Agonist MHC-peptide complexes in the immunological synapse (IS) signal through T cell receptor (TCR) microclusters (MCs) that converge into a central supramolecular activation cluster (cSMAC). The determinants and function of the cSMAC remain unknown. We demonstrate an essential role for ubiquitin (Ub) and TSG101, but less so for HRS, in signal processing events at the cSMAC. Using siRNA in primary T cells, we show that Ub recognition by TSG101 is required for cSMAC formation, TCR MC signal termination, TCR downregulation, and segregation of TCR-MHC-peptide from PKC-theta-enriched signaling complexes. Weak agonist MHC-peptide induced CD80-dependent TCR MCs that dissociated in the center of the IS without recruiting TSG101. These results support TSG101-dependent recognition of CD80-independent TCR MCs as a molecular checkpoint for TCR downregulation.
Immunity | 2009
Allison M. Beal; Nadia Anikeeva; Rajat Varma; Thomas O. Cameron; Gaia Vasiliver-Shamis; Philip J. Norris; Michael L. Dustin; Yuri Sykulev
Cytolytic granules mediate killing of virus-infected cells by cytotoxic T lymphocytes. We show here that the granules can take long or short paths to the secretory domain. Both paths utilized the same intracellular molecular events, which have different spatial and temporal arrangements and are regulated by the kinetics of Ca(2+)-mediated signaling. Rapid signaling caused swift granule concentration near the microtubule-organizing center (MTOC) and subsequent delivery by the polarized MTOC directly to the secretory domain-the shortest path. Indolent signaling led to late recruitment of granules that moved along microtubules to the periphery of the synapse and then moved tangentially to fuse at the outer edge of the secretory domain-a longer path. The short pathway is associated with faster granule release and more efficient killing than the long pathway. Thus, the kinetics of early signaling regulates the quality of the T cell cytolytic response.
Journal of Immunology | 2008
Allison M. Beal; Nadia Anikeeva; Rajat Varma; Thomas O. Cameron; Philip J. Norris; Michael L. Dustin; Yuri Sykulev
Destruction of virus-infected cells by CTL is an extremely sensitive and efficient process. Our previous data suggest that LFA-1-ICAM-1 interactions in the peripheral supramolecular activation cluster (pSMAC) of the immunological synapse mediate formation of a tight adhesion junction that might contribute to the sensitivity of target cell lysis by CTL. Herein, we compared more (CD8+) and less (CD4+) effective CTL to understand the molecular events that promote efficient target cell lysis. We found that abrogation of the pSMAC formation significantly impaired the ability of CD8+ but not CD4+ CTL to lyse target cells despite having no effect of the amount of released granules by both CD8+ and CD4+ CTL. Consistent with this, CD4+ CTL break their synapses more often than do CD8+ CTL, which leads to the escape of the cytolytic molecules from the interface. CD4+ CTL treatment with a protein kinase Cθ inhibitor increases synapse stability and sensitivity of specific target cell lysis. Thus, formation of a stable pSMAC, which is partially controlled by protein kinase Cθ, functions to confine the released lytic molecules at the synaptic interface and to enhance the effectiveness of target cell lysis.
Current protocols in immunology | 2007
Michael L. Dustin; Toby Starr; Rajat Varma; V K Thomas
Supported planar bilayers have been used in immunology research for over 25 years, including in the initial demonstrations of MHC‐peptide complex functional activity and adhesion molecule activity. More recent modifications of the method have been used to measure two‐dimensional affinities and to study the formation of the immunological synapse. This unit covers the incorporation of glycolipid‐anchored membrane proteins, 6‐histidine‐tagged soluble proteins, and monobiotinylated soluble proteins into supported planar bilayers. Reagents developed for the MHC‐peptide tetramer staining method (UNIT 17.3) can readily be adapted to presentation on planar bilayers. The unique advantage of this approach is that the proteins presented on the surface of the supported bilayer are laterally mobile. This provides a more physiological presentation of cell‐surface molecules and supports visualization of protein rearrangement on the bilayer by live cells.
Immunity | 2006
Rajat Varma; Gabriele Campi; Tadashi Yokosuka; Takashi Saito; Michael L. Dustin
Science | 2003
Kyeong-Hee Lee; Aaron R. Dinner; Chun Tu; Gabriele Campi; Subhadip Raychaudhuri; Rajat Varma; Tasha N. Sims; W. Richard Burack; Hui Wu; Julia Wang; Osami Kanagawa; Mary A. Markiewicz; Paul M. Allen; Michael L. Dustin; Arup K. Chakraborty; Andrey S. Shaw