Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rajendar K. Mittapalli is active.

Publication


Featured researches published by Rajendar K. Mittapalli.


Clinical Cancer Research | 2010

Heterogeneous blood-tumor barrier permeability determines drug efficacy in experimental brain metastases of breast cancer

Paul R. Lockman; Rajendar K. Mittapalli; Kunal S. Taskar; Vinay Rudraraju; Brunilde Gril; Kaci A. Bohn; Chris E. Adkins; Amanda Roberts; Helen R. Thorsheim; Julie A. Gaasch; Suyun Huang; Diane Palmieri; Patricia S. Steeg; Quentin R. Smith

Purpose: Brain metastases of breast cancer appear to be increasing in incidence, confer significant morbidity, and threaten to compromise gains made in systemic chemotherapy. The blood–tumor barrier (BTB) is compromised in many brain metastases; however, the extent to which this influences chemotherapeutic delivery and efficacy is unknown. Herein, we answer this question by measuring BTB passive integrity, chemotherapeutic drug uptake, and anticancer efficacy in vivo in two breast cancer models that metastasize preferentially to brain. Experimental Design:Experimental brain metastasis drug uptake and BTB permeability were simultaneously measured using novel fluorescent and phosphorescent imaging techniques in immune-compromised mice. Drug-induced apoptosis and vascular characteristics were assessed using immunofluorescent microscopy. Results: Analysis of over 2,000 brain metastases from two models (human 231-BR-Her2 and murine 4T1-BR5) showed partial BTB permeability compromise in greater than 89% of lesions, varying in magnitude within and between metastases. Brain metastasis uptake of 14C-paclitaxel and 14C-doxorubicin was generally greater than normal brain but less than 15% of that of other tissues or peripheral metastases, and only reached cytotoxic concentrations in a small subset (∼10%) of the most permeable metastases. Neither drug significantly decreased the experimental brain metastatic ability of 231-BR-Her2 tumor cells. BTB permeability was associated with vascular remodeling and correlated with overexpression of the pericyte protein desmin. Conclusions: This work shows that the BTB remains a significant impediment to standard chemotherapeutic delivery and efficacy in experimental brain metastases of breast cancer. New brain permeable drugs will be needed. Evidence is presented for vascular remodeling in BTB permeability alterations. Clin Cancer Res; 16(23); 5664–78. ©2010 AACR.


Journal of Pharmacology and Experimental Therapeutics | 2012

Impact of P-Glycoprotein (ABCB1) and Breast Cancer Resistance Protein (ABCG2) on the Brain Distribution of a Novel BRAF Inhibitor: Vemurafenib (PLX4032)

Rajendar K. Mittapalli; Shruthi Vaidhyanathan; Ramola Sane; William F. Elmquist

Vemurafenib [N-(3-{[5-(4-chlorophenyl)-1H-pyrrolo[2,3-b]pyridin-3-yl]carbonyl}-2,4-difluorophenyl)propane-1-sulfonamide(PLX4032)] is a novel small-molecule BRAF inhibitor, recently approved by the Food and Drug Administration for the treatment of patients with metastatic melanoma with a BRAFV600E mutation. The objective of this study was to investigate the role of P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP) in the distribution of vemurafenib to the central nervous system. In vitro studies conducted in transfected Madin-Darby canine kidney II cells show that the intracellular accumulation of vemurafenib is significantly restricted because of active efflux by P-gp and BCRP. Bidirectional flux studies indicated greater transport in the basolateral-to-apical direction than the apical-to-basolateral direction because of active efflux by P-gp and BCRP. The selective P-gp and BCRP inhibitors zosuquidar and (3S,6S,12aS)-1,2,3,4,6,7,12,12a-octahydro-9-methoxy-6-(2-methylpropyl)-1,4-dioxopyrazino(1′,2′:1,6)pyrido(3,4-b)indole-3-propanoic acid-1,1-dimethylethyl ester (Ko143) were able to restore the intracellular accumulation and bidirectional net flux of vemurafenib. The in vivo studies revealed that the brain distribution coefficient (area under the concentration time profile of brain/area under the concentration time profile of plasma) of vemurafenib was 0.004 in wild-type mice. The steady-state brain-to-plasma ratio of vemurafenib was 0.035 ± 0.009 in Mdr1a/b(−/−) mice, 0.009 ± 0.006 in Bcrp1(−/−) mice, and 1.00 ± 0.19 in Mdr1a/b(−/−)Bcrp1(−/−) mice compared with 0.012 ± 0.004 in wild-type mice. These data indicate that the brain distribution of vemurafenib is severely restricted at the blood-brain barrier because of active efflux by both P-gp and BCRP. This finding has important clinical significance given the ongoing trials examining the efficacy of vemurafenib in brain metastases of melanoma.


Clinical Cancer Research | 2009

Vorinostat Inhibits Brain Metastatic Colonization in a Model of Triple-Negative Breast Cancer and Induces DNA Double-Strand Breaks

Diane Palmieri; Paul R. Lockman; Fancy Thomas; Emily Hua; Jeanne M. Herring; Elizabeth Hargrave; Matthew Johnson; Natasha M. Flores; Yongzhen Qian; Eleazar Vega-Valle; Kunal S. Taskar; Vinay Rudraraju; Rajendar K. Mittapalli; Julie A. Gaasch; Kaci A. Bohn; Helen R. Thorsheim; David J. Liewehr; Sean Davis; John F. Reilly; Robert L. Walker; Julie L. Bronder; Lionel Feigenbaum; Seth M. Steinberg; Kevin Camphausen; Paul S. Meltzer; Victoria M. Richon; Quentin R. Smith; Patricia S. Steeg

Purpose: As chemotherapy and molecular therapy improve the systemic survival of breast cancer patients, the incidence of brain metastases increases. Few therapeutic strategies exist for the treatment of brain metastases because the blood-brain barrier severely limits drug access. We report the pharmacokinetic, efficacy, and mechanism of action studies for the histone deactylase inhibitor vorinostat (suberoylanilide hydroxamic acid) in a preclinical model of brain metastasis of triple-negative breast cancer. Experimental Design: The 231-BR brain trophic subline of the MDA-MB-231 human breast cancer cell line was injected into immunocompromised mice for pharmacokinetic and metastasis studies. Pharmacodynamic studies compared histone acetylation, apoptosis, proliferation, and DNA damage in vitro and in vivo. Results: Following systemic administration, uptake of [14C]vorinostat was significant into normal rodent brain and accumulation was up to 3-fold higher in a proportion of metastases formed by 231-BR cells. Vorinostat prevented the development of 231-BR micrometastases by 28% (P = 0.017) and large metastases by 62% (P < 0.0001) compared with vehicle-treated mice when treatment was initiated on day 3 post-injection. The inhibitory activity of vorinostat as a single agent was linked to a novel function in vivo: induction of DNA double-strand breaks associated with the down-regulation of the DNA repair gene Rad52. Conclusions: We report the first preclinical data for the prevention of brain metastasis of triple-negative breast cancer. Vorinostat is brain permeable and can prevent the formation of brain metastases by 62%. Its mechanism of action involves the induction of DNA double-strand breaks, suggesting rational combinations with DNA active drugs or radiation. (Clin Cancer Res 2009;15(19):6148–57)


Journal of Pharmacology and Experimental Therapeutics | 2013

Mechanisms Limiting Distribution of the Threonine-Protein Kinase B-RaF V600E Inhibitor Dabrafenib to the Brain: Implications for the Treatment of Melanoma Brain Metastases

Rajendar K. Mittapalli; Shruthi Vaidhyanathan; Arkadiusz Z. Dudek; William F. Elmquist

Brain metastases are a common cause of death in stage IV metastatic melanoma. Dabrafenib is a BRAF (gene encoding serine/threonine-protein kinase B-Raf) inhibitor that has been developed to selectively target the valine 600 to glutamic acid substitution (BRAFV600E), which is commonly found in metastatic melanoma. Clinical trials with dabrafenib have shown encouraging results; however, the central nervous system distribution of dabrafenib remains unknown. Thus, the objective of the current study was to evaluate the brain distribution of dabrafenib in mice, and to see whether active efflux by P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP) restricts its delivery across the blood-brain barrier (BBB). In vitro accumulation studies conducted in Madin-Darby canine kidney II cells indicate that dabrafenib is an avid substrate for both P-gp and BCRP. Directional flux studies revealed greater transport in the basolateral to apical direction with corrected efflux ratios greater than 2 for both P-gp and Bcrp1 transfected cell lines. In vivo, the ratio of area under the concentration-time curve (AUC)brain to AUCplasma (Kp) of dabrafenib after an i.v. dose (2.5 mg/kg) was 0.023, which increased by 18-fold in Mdr1 a/b−/−Bcrp1−/− mice to 0.42. Dabrafenib plasma exposure was ∼2-fold greater in Mdr1 a/b−/−Bcrp1−/− mice as compared with wild-type with an oral dose (25 mg/kg); however, the brain distribution was increased by ~10-fold with a resulting Kp of 0.25. Further, compared with vemurafenib, another BRAFV600E inhibitor, dabrafenib showed greater brain penetration with a similar dose. In conclusion, the dabrafenib brain distribution is limited in an intact BBB model, and the data presented herein may have clinical implications in the prevention and treatment of melanoma brain metastases.


Drug Metabolism and Disposition | 2012

Quantitative Proteomics of Transporter Expression in Brain Capillary Endothelial Cells Isolated from P-Glycoprotein (P-gp), Breast Cancer Resistance Protein (Bcrp), and P-gp/Bcrp Knockout Mice

Sagar Agarwal; Yasuo Uchida; Rajendar K. Mittapalli; Ramola Sane; Tetsuya Terasaki; William F. Elmquist

The objective of this study was to quantitatively examine the protein expression of relevant transporters and other proteins in the brain capillary endothelial cells isolated from wild-type mice and P-glycoprotein (P-gp), breast cancer resistance protein (Bcrp), and P-gp/Bcrp knockout mice. After the isolation of brain capillary endothelial cells, a highly sensitive liquid chromatography-tandem mass spectrometry method with multiple reaction monitoring was used to determine the quantitative expression of membrane transporters at the blood-brain barrier (BBB) of the various mouse genotypes. Quantitative expression of 29 protein molecules, including 12 ATP-binding cassette transporters, 10 solute carrier transporters, five receptors, and two housekeeping proteins, was examined by quantitative proteomics in the four mouse genotypes. There was no significant difference in the expression of P-gp between the wild-type and Bcrp1(−/−) mice. Likewise, Bcrp expression was not significantly different between the wild-type and Mdr1a/b(−/−) mice. There was no significant difference in the expression of any of the measured proteins in the brain capillary endothelial cells across the genotypes, except for the lack of expression of the corresponding protein in the mice that had a genetic deletion of P-gp or Bcrp. In conclusion, using a quantitative proteomic approach, we have shown that there are no changes in the expression of several relevant transporters in brain capillary endothelial cells isolated from single and combination knockout mice. These data suggest that the mechanism behind the functional compensation between P-gp and Bcrp at the BBB is not related to compensatory changes in transporter expression.


Neuro-oncology | 2016

Strategies to improve delivery of anticancer drugs across the blood-brain barrier to treat glioblastoma

Rajneet K. Oberoi; Karen E. Parrish; T.T. Sio; Rajendar K. Mittapalli; William F. Elmquist; Jann N. Sarkaria

Glioblastoma (GBM) is a lethal and aggressive brain tumor that is resistant to conventional radiation and cytotoxic chemotherapies. Molecularly targeted agents hold great promise in treating these genetically heterogeneous tumors, yet have produced disappointing results. One reason for the clinical failure of these novel therapies can be the inability of the drugs to achieve effective concentrations in the invasive regions beyond the bulk tumor. In this review, we describe the influence of the blood-brain barrier on the distribution of anticancer drugs to both the tumor core and infiltrative regions of GBM. We further describe potential strategies to overcome these drug delivery limitations. Understanding the key factors that limit drug delivery into brain tumors will guide future development of approaches for enhanced delivery of effective drugs to GBM.


Molecular Cancer Therapeutics | 2013

Paclitaxel–Hyaluronic NanoConjugates Prolong Overall Survival in a Preclinical Brain Metastases of Breast Cancer Model

Rajendar K. Mittapalli; Xinli Liu; Chris E. Adkins; Mohamed Ismail Nounou; Kaci A. Bohn; Tori B. Terrell; Hussaini Syed Sha Qhattal; Werner J. Geldenhuys; Diane Palmieri; Patricia S. Steeg; Quentin R. Smith; Paul R. Lockman

Brain (central nervous system; CNS) metastases pose a life-threatening problem for women with advanced metastatic breast cancer. It has recently been shown that the vasculature within preclinical brain metastasis model markedly restricts paclitaxel delivery in approximately 90% of CNS lesions. Therefore to improve efficacy, we have developed an ultra-small hyaluronic acid (HA) paclitaxel nanoconjugate (∼5 kDa) that can passively diffuse across the leaky blood–tumor barrier and then be taken up into cancer cells (MDA–MB–231Br) via CD44 receptor–mediated endocytocis. Using CD44 receptor–mediated endocytosis as an uptake mechanism, HA-paclitaxel was able to bypass p-glycoprotein–mediated efflux on the surface of the cancer cells. In vitro cytoxicity of the conjugate and free paclitaxel were similar in that they (i) both caused cell-cycle arrest in the G2–M phase, (ii) showed similar degrees of apoptosis induction (cleaved caspase), and (iii) had similar IC50 values when compared with paclitaxel in MTT assay. A preclinical model of brain metastases of breast cancer using intracardiac injections of Luc-2 transfected MDA–MB–231Br cells was used to evaluate in vivo efficacy of the nanoconjugate. The animals administered with HA–paclitaxel nanoconjugate had significantly longer overall survival compared with the control and the paclitaxel-treated group (P < 0.05). This study suggests that the small molecular weight HA–paclitaxel nanoconjugates can improve standard chemotherapeutic drug efficacy in a preclinical model of brain metastases of breast cancer. Mol Cancer Ther; 12(11); 2389–99. ©2013 AACR.


Drug Metabolism and Disposition | 2014

Factors Influencing the CNS Distribution of a Novel MEK-1/2 Inhibitor: Implications for Combination Therapy for Melanoma Brain Metastases

Shruthi Vaidhyanathan; Rajendar K. Mittapalli; Jann N. Sarkaria; William F. Elmquist

Brain metastases are a major cause of mortality in patients with advanced melanoma. Adequate brain distribution of targeted agents for melanoma will be critical for treatment success. Recently, improvement in overall survival led to US Food and Drug Administration (FDA) approval of the v-raf murine sarcoma viral oncogene homolog B (BRAF) inhibitors, vemurafenib and dabrafenib, and the mitogen-activated protein kinase kinase-1 (MEK)-1/2 inhibitor, trametinib. However, brain metastases and emergence of resistance remain a significant problem. MEK-1/2 is downstream of BRAF in the mitogen-activated protein kinase (MAPK) signaling pathway, making it an attractive target to combat resistance. The recently approved combination of dabrafenib and trametinib has shown improvement in progression-free survival; however, adequate brain distribution of both compounds is required to effectively treat brain metastases. In previous studies, we found limited brain distribution of dabrafenib. The purpose of the current study was to investigate factors influencing the brain distribution of trametinib. In vitro studies indicated that trametinib is a substrate for both P-glycoprotein (P-gp) and Bcrp, efflux transporters found at the blood-brain barrier. In vivo studies in transgenic mouse models confirmed that P-gp plays an important role in restricting brain distribution of trametinib. The brain-to-plasma partition coefficient (AUCbrain/AUCplasma) was approximately 5-fold higher in Mdr1a/b(−/−) (P-gp knockout) and Mdr1a/b(−/−)Bcrp1(−/−) (triple knockout) mice when compared with wild-type and Bcrp1(−/−) (Bcrp knockout) mice. The brain distribution of trametinib was similar between the wild-type and Bcrp knockout mice. These results show that P-gp plays an important role in limiting brain distribution of trametinib and may have important implications for use of trametinib as single agent or in combination therapy for treatment of melanoma brain metastases.


Journal of Pharmacology and Experimental Therapeutics | 2013

Pharmacokinetic Assessment of Efflux Transport in Sunitinib Distribution to the Brain

Rajneet K. Oberoi; Rajendar K. Mittapalli; William F. Elmquist

This study quantitatively assessed transport mechanisms that limit the brain distribution of sunitinib and investigated adjuvant strategies to improve its brain delivery for the treatment of glioblastoma multiforme (GBM). Sunitinib has not shown significant activity in GBM clinical trials, despite positive results seen in preclinical xenograft studies. We performed in vivo studies in transgenic Friend leukemia virus strain B mice: wild-type, Mdr1a/b(−/−), Bcrp1(−/−), and Mdr1a/b(−/−)Bcrp1(−/−) genotypes were examined. The brain-to-plasma area under the curve ratio after an oral dose (20 mg/kg) was similar to the steady-state tissue distribution coefficient, indicating linear distribution kinetics in mice over this concentration range. Furthermore, the distribution of sunitinib to the brain increased after administration of selective P-glycoprotein (P-gp) or breast cancer resistance protein (Bcrp) pharmacological inhibitors and a dual inhibitor, elacridar, comparable to that of the corresponding transgenic genotype. The brain-to-plasma ratio after coadministration of elacridar in wild-type mice was ∼12 compared with ∼17.3 in Mdr1a/b(−/−)Bcrp1(−/−) mice. Overall, these findings indicate that there is a cooperation at the blood-brain barrier (BBB) in restricting the brain penetration of sunitinib, and brain delivery can be enhanced by administration of a dual inhibitor. These data indicate that the presence of cooperative efflux transporters, P-gp and Bcrp, in an intact BBB can protect invasive glioma cells from chemotherapy. Thus, one may consider the use of transporter inhibition as a powerful adjuvant in the design of future clinical trials for the targeted delivery of sunitinib in GBM.


Molecular Cancer Therapeutics | 2012

Active efflux of dasatinib from the brain limits efficacy against murine glioblastoma: broad implications for the clinical use of molecularly-targeted agents

Sagar Agarwal; Rajendar K. Mittapalli; David M. Zellmer; Jose L. Gallardo; Randy Donelson; Charlie Seiler; Stacy A. Decker; Karen S. SantaCruz; Jenny L. Pokorny; Jann N. Sarkaria; William F. Elmquist; John R. Ohlfest

The importance of the blood–brain barrier in preventing effective pharmacotherapy of glioblastoma has been controversial. The controversy stems from the fact that vascular endothelial cell tight junctions are disrupted in the tumor, allowing some systemic drug delivery. P-glycoprotein (Pgp) and breast cancer resistance protein (BCRP) efflux drugs from brain capillary endothelial cells into the blood. We tested the hypothesis that although the tight junctions are “leaky” in the core of glioblastomas, active efflux limits drug delivery to tumor-infiltrated normal brain and consequently, treatment efficacy. Malignant gliomas were induced by oncogene transfer into wild-type (WT) mice or mice deficient for Pgp and BCRP (knockout, KO). Glioma-bearing mice were orally dosed with dasatinib, a kinase inhibitor and dual BCRP/PgP substrate that is being currently tested in clinical trials. KO mice treated with dasatinib survived for twice as long as WT mice. Microdissection of the tumor core, invasive rim, and normal brain revealed 2- to 3-fold enhancement in dasatinib brain concentrations in KO mice relative to WT. Analysis of signaling showed that poor drug delivery correlated with the lack of inhibition of a dasatinib target, especially in normal brain. A majority of human glioma xenograft lines tested expressed BCRP or PgP and were sensitized to dasatinib by a dual BCRP/Pgp inhibitor, illustrating a second barrier to drug delivery intrinsic to the tumor itself. These data show that active efflux is a relevant obstacle to treating glioblastoma and provide a plausible mechanistic basis for the clinical failure of numerous drugs that are BCRP/Pgp substrates. Mol Cancer Ther; 11(10); 2183–92. ©2012 AACR.

Collaboration


Dive into the Rajendar K. Mittapalli's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Diane Palmieri

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge