Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rajender S. Sangwan is active.

Publication


Featured researches published by Rajender S. Sangwan.


Plant Growth Regulation | 2001

Regulation of essential oil production in plants

Neelam S. Sangwan; A. H. Abad Farooqi; F. Shabih; Rajender S. Sangwan

This review provides a summary of the physiological dynamics andregulation of essential oil production, from the literature and availableinformation on diverse volatile oil crops. Essential oil production is highlyintegrated with the physiology of the whole plant and so depends on themetabolic state and preset developmental differentiation programme of thesynthesising tissue. Essential oil productivity is ecophysiologically andenvironmentally friendly. These and other aspects of the modulation ofessentialoil production are presented, along with a brief outline of the current conceptof the relevant biosynthetic mechanisms.


Apoptosis | 2008

Withaferin A induces apoptosis by activating p38 mitogen-activated protein kinase signaling cascade in leukemic cells of lymphoid and myeloid origin through mitochondrial death cascade

Chandan Mandal; Avijit Dutta; Asish Mallick; Sarmila Chandra; Laxminarain Misra; Rajender S. Sangwan; Chitra Mandal

Withaferin A (WA) is present abundantly in Withania somnifera, a well-known Indian medicinal plant. Here we demonstrate how WA exhibits a strong growth-inhibitory effect on several human leukemic cell lines and on primary cells from patients with lymphoblastic and myeloid leukemia in a dose-dependent manner, showing no toxicity on normal human lymphocytes and primitive hematopoietic progenitor cells. WA-mediated decrease in cell viability was observed through apoptosis as demonstrated by externalization of phosphatidylserine, a time-dependent increase in Bax/Bcl-2 ratio; loss of mitochondrial transmembrane potential, cytochrome c release, caspases 9 and 3 activation; and accumulation of cells in sub-G0 region based on DNA fragmentation. A search for the downstream pathway further reveals that WA-induced apoptosis was mediated by an increase in phosphorylated p38MAPK expression, which further activated downstream signaling by phosphorylating ATF-2 and HSP27 in leukemic cells. The RNA interference of p38MAPK protected these cells from WA-induced apoptosis. The RNAi knockdown of p38MAPK inhibited active phosphorylation of p38MAPK, Bax expression, activation of caspase 3 and increase in Annexin V positivity. Altogether, these findings suggest that p38MAPK in leukemic cells promotes WA-induced apoptosis. WA caused increased levels of Bax in response to MAPK signaling, which resulted in the initiation of mitochondrial death cascade, and therefore it holds promise as a new, alternative, inexpensive chemotherapeutic agent for the treatment of patients with leukemia of both lymphoid and myeloid origin.


Phytochemistry | 2010

Comprehensive metabolic fingerprinting of Withania somnifera leaf and root extracts

Sandipan Chatterjee; Shatakshi Srivastava; Asna Khalid; Niharika Singh; Rajender S. Sangwan; Om Prakash Sidhu; Raja Roy; C. L. Khetrapal; Rakesh Tuli

Profiling of metabolites is a rapidly expanding area of research for resolving metabolic pathways. Metabolic fingerprinting in medicinally important plants is critical to establishing the quality of herbal medicines. In the present study, metabolic profiling of crude extracts of leaf and root of Withania somnifera (Ashwagandha), an important medicinal plant of Indian system of medicine (ISM) was carried out using NMR and chromatographic (HPLC and GC-MS) techniques. A total of 62 major and minor primary and secondary metabolites from leaves and 48 from roots were unambiguously identified. Twenty-nine of these were common to the two tissues. These included fatty acids, organic acids, amino acids, sugars and sterol based compounds. Eleven bioactive sterol-lactone molecules were also identified. Twenty-seven of the identified metabolites were quantified. Highly significant qualitative and quantitative differences were noticed between the leaf and root tissues, particularly with respect to the secondary metabolites.


Physiologia Plantarum | 2008

Withanolide A is inherently de novo biosynthesized in roots of the medicinal plant Ashwagandha (Withania somnifera).

Rajender S. Sangwan; Narayan Das Chaurasiya; Payare Lal; Laxminarain Misra; Rakesh Tuli; Neelam S. Sangwan

Ashwagandha (Withania somnifera Dunal., Solanaceae) is one of the most reputed medicinal plants of Ayurveda, the traditional medical system. Several of its traditionally proclaimed medicinal properties have been corroborated by recent molecular pharmacological investigations and have been shown to be associated with its specific secondary metabolites known as withanolides, the novel group of ergostane skeletal phytosteroids named after the plant. Withanolides are structurally distinct from tropane/nortropane alkaloids (usually found in Solanaceae plants) and are produced only by a few genera within Solanaceae. W. somnifera contains many structurally diverse withanolides in its leaves as well as roots. To date, there has been little biosynthetic or metabolism-related research on withanolides. It is thought that withanolides are synthesized in leaves and transported to roots like the tropane alkaloids, a group of bioactive secondary metabolites in Solanaceae members known to be synthesized in roots and transported to leaves for storage. To examine this, we have studied incorporation of (14)C from [2-(14)C]-acetate and [U-(14)C]-glucose into withanolide A in the in vitro cultured normal roots as well as native/orphan roots of W. somnifera. Analysis of products by thin layer chromatography revealed that these primary metabolites were incorporated into withanolide A, demonstrating that root-contained withanolide A is de novo synthesized within roots from primary isoprenogenic precursors. Therefore, withanolides are synthesized in different parts of the plant (through operation of the complete metabolic pathway) rather than imported.


PLOS ONE | 2013

De Novo Assembly, Functional Annotation and Comparative Analysis of Withania somnifera Leaf and Root Transcriptomes to Identify Putative Genes Involved in the Withanolides Biosynthesis

Parul Gupta; Ridhi Goel; Sumya Pathak; Apeksha Srivastava; Surya Pratap Singh; Rajender S. Sangwan; Mehar Hasan Asif; Prabodh Kumar Trivedi

Withania somnifera is one of the most valuable medicinal plants used in Ayurvedic and other indigenous medicine systems due to bioactive molecules known as withanolides. As genomic information regarding this plant is very limited, little information is available about biosynthesis of withanolides. To facilitate the basic understanding about the withanolide biosynthesis pathways, we performed transcriptome sequencing for Withania leaf (101L) and root (101R) which specifically synthesize withaferin A and withanolide A, respectively. Pyrosequencing yielded 8,34,068 and 7,21,755 reads which got assembled into 89,548 and 1,14,814 unique sequences from 101L and 101R, respectively. A total of 47,885 (101L) and 54,123 (101R) could be annotated using TAIR10, NR, tomato and potato databases. Gene Ontology and KEGG analyses provided a detailed view of all the enzymes involved in withanolide backbone synthesis. Our analysis identified members of cytochrome P450, glycosyltransferase and methyltransferase gene families with unique presence or differential expression in leaf and root and might be involved in synthesis of tissue-specific withanolides. We also detected simple sequence repeats (SSRs) in transcriptome data for use in future genetic studies. Comprehensive sequence resource developed for Withania, in this study, will help to elucidate biosynthetic pathway for tissue-specific synthesis of secondary plant products in non-model plant organisms as well as will be helpful in developing strategies for enhanced biosynthesis of withanolides through biotechnological approaches.


Plant Cell Reports | 2012

Withanolide biosynthesis recruits both mevalonate and DOXP pathways of isoprenogenesis in Ashwagandha Withania somnifera L. (Dunal)

Narayan D. Chaurasiya; Neelam S. Sangwan; Farzana Sabir; Laxminarain Misra; Rajender S. Sangwan

AbstractWithanolides are pharmaceutically important C28-phytochemicals produced in most prodigal amounts and diversified forms by Withania somnifera. Metabolic origin of withanolides from triterpenoid pathway intermediates implies that isoprenogenesis could significantly govern withanolide production. In plants, isoprenogenesis occurs via two routes: mevalonate (MVA) pathway in cytosol and non-mevalonate or DOXP/MEP pathway in plastids. We have investigated relative carbon contribution of MVA and DOXP pathways to withanolide biosynthesis in W. somnifera. The quantitative NMR-based biosynthetic study involved tracing of 13C label from 13C1-d-glucose to withaferin A in withanolide producing in vitro microshoot cultures of the plant. Enrichment of 13C abundance at each carbon of withaferin A from 13C1-glucose-fed cultures was monitored by normalization and integration of NMR signal intensities. The pattern of carbon position-specific 13C enrichment of withaferin A was analyzed by a retro-biosynthetic approach using a squalene-intermediated metabolic model of withanolide (withaferin A) biosynthesis. The pattern suggested that both DOXP and MVA pathways of isoprenogenesis were significantly involved in withanolide biosynthesis with their relative contribution on the ratio of 25:75, respectively. The results have been discussed in a new conceptual line of biosynthetic load-driven model of relative recruitment of DOXP and MVA pathways for biosynthesis of isoprenoids. Key message The study elucidates significant contribution of DOXP pathway to withanolide biosynthesis. A new connotation of biosynthetic load-based role of DOXP/MVA recruitment in isoprenoid biosynthesis has been proposed.


Molecular Cancer | 2010

Withanolide D induces apoptosis in leukemia by targeting the activation of neutral sphingomyelinase-ceramide cascade mediated by synergistic activation of c-Jun N-terminal kinase and p38 mitogen-activated protein kinase

Susmita Mondal; Chandan Mandal; Rajender S. Sangwan; Sarmila Chandra; Chitra Mandal

BackgroundCeramide is an important second messenger that has diverse cellular and biological effect. It is a specific and potent inducer of apoptosis and suppressor of cell growth. In leukemia, chemoresistance generally developed due to deregulated ceramide metabolism. In combinatorial treatment strategies of leukemia, few components have the capability to increases ceramide production. Manipulation in ceramide production by physiological and pharmacological modulators therefore will give additive effect in leukemia chemotherapy.ResultsHere, we show that Withanolide D (C4β-C5β,C6β-epoxy-1-oxo-,20β, dihydroxy-20S,22R-witha-2,24-dienolide; WithaD), a pure herbal compound isolated from Withania somnifera could effectively induces apoptosis in a dose and time dependant manner both in myeloid (K562) and lymphoid (MOLT-4) cells being nontoxic to normal lymphocytes and control proliferative cells. WithaD potentially augment ceramide production in these cells. Downstream of ceramide, WithaD acted on MKK group of proteins and significantly increased JNK and p38MAPK phosphorylation. Pharmacological inhibition of p38MAPK and JNK proves their cooperative action on WithaD-induced cell death. Dissecting the cause of ceramide production, we found activation of neutral sphingomyelinase and showed neutral-sphingomyelinase 2 (N-SMase 2) is a critical mediator of WithaD-induced apoptosis. Knockdown of N-SMase 2 by siRNA and inhibitor of N-SMase (GW4869) significantly reduced WithaD-induced ceramide generation and phosphorylation of MKK4 and MKK3/6, whereas phosphorylation of MKK7 was moderately regulated in leukemic cells. Also, both by silencing of N-SMase 2 and/or blocking by GW4869 protects these cells from WithaD-mediated death and suppressed apoptosis, whereas Fumonisin B1, an inhibitor of ceramide synthase, did not have any effect. Additionally, WithaD effectively induced apoptosis in freshly isolated lymphoblasts from patients and the potent cell killing activity was through JNK and p38MAPK activation.ConclusionOur results demonstrate that WithaD enhance the ceramide accumulation by activating N-SMase 2, modulate phosphorylation of the JNK and p38MAPK and induced apoptosis in both myeloid and lymphoid cells along with primary cells derived from leukemia patients. Taken together, this pure herbal compound (WithaD) may consider as a potential alternative tool with additive effects in conjunction with traditional chemotherapeutic treatment, thereby accelerate the process of conventional drug development.


Phytochemistry | 1993

Biotransformation of arteannuic acid into arteannuin-B and artemisinin in Artemisia annua

Rajender S. Sangwan; K. Agarwal; Rajesh Luthra; Raghunath S. Thakur; Neelam Singh-Sangwan

Abstract In Artemisia annua , [ 14 C]arteannuic acid was incorporated into arteannuin-B as well as artemisinin, both in vivo and in a cell free system. Fe 2 , 2-oxoglutarate, and peroxidase-H 2 O 2 enhanced the incorporations under in vitro conditions. The results suggest that arteannuic acid might be a common precursor for arteannuin-B and artemisinin synthesis.


Iubmb Life | 1999

RAPD profile based genetic characterization of chemotypic variants of Artemisia annua L.

Rajender S. Sangwan; Neelam S. Sangwan; D. C. Jain; Sushil Kumar; Shirish A. Ranade

The annual herbaceous plant, Artemisia annua L., belonging to family Asteraceae, is the natural source of the highly potent antimalarial compound, artemisinin, besides producing valuable essential oil. The plant is at present the sole commercial source for artemisinin production since all the chemical syntheses are non-viable. Therefore, economic and practical considerations dictate that plants with maximum content of artemisinin be found and/or ways to increase their artemisinin content be sought. The key to this selection and breeding is a comprehension of chemical and genetic variability and suitable selection(s) of elites from within the available population. In the present study, RAPD analyses of selected chemotypes from a decade old introduced population in India were carried out using arbitrary primers. The RAPD data clearly indicate the distinction amongst these plants. Further, the detection of highly polymorphic profiles (97 polymorphic markers out of a total of 101 markers) suggests the existence of very high levels of genetic variation in the Indian population despite geographical isolation and opens out a strong possibility of further genetic improvement for superior artemisinin content. UPGMA analyses of RAPD and phytochemical trait data indicate that the wide phytochemical diversity is included within the genetic diversity. These results further support the prospects for selection and breeding of superior artemisinin containing lines.


Plant Physiology and Biochemistry | 2014

Effect of prolonged water stress on specialized secondary metabolites, peltate glandular trichomes, and pathway gene expression in Artemisia annua L.

Ritesh Kumar Yadav; Rajender S. Sangwan; Farzana Sabir; Awadesh K. Srivastava; Neelam S. Sangwan

Artemisia annua L. accumulates substantial quantities of unique sesquiternoid artemisinin and related phytomolecules and characteristic essential oil in glandular trichomes, present on its leaves and inflorescence. Water stress is a major concern in controlling plant growth and productivity. In this study, our aim was to find out the modulation of artemisinin and essential oil constituents in plants grown under prolonged water stress conditions. A. annua CIM-Arogya plants grown in pots were subjected to mild (60% ± 5) and moderate (40% ± 5) water stress treatment and continued during entire developmental period. Results revealed that artemisinin, arteannuin-B, artemisinic acid, dihydroartemisinic acid and essential oil content were positively controlled by the growth and development however negatively modulated by water deficit stress. Interestingly, some of minor monoterpenes, all sesquiterpenes and other low molecular weight volatiles of essential oil components were induced by water deficit treatment. Camphor which is the major essential oil constituents did not alter much while 1, 8 cineole was modulated during development of plant as well as under water stress conditions. Water deficit stress induces a decrease in glandular trichome density and size as well. The dynamics of various secondary metabolites is discussed in the light of growth responses, trichomes and pathway gene expression in plants grown under two levels of prolonged water stress conditions.

Collaboration


Dive into the Rajender S. Sangwan's collaboration.

Top Co-Authors

Avatar

Neelam S. Sangwan

Central Institute of Medicinal and Aromatic Plants

View shared research outputs
Top Co-Authors

Avatar

Farzana Sabir

Central Institute of Medicinal and Aromatic Plants

View shared research outputs
Top Co-Authors

Avatar

Laxminarain Misra

Central Institute of Medicinal and Aromatic Plants

View shared research outputs
Top Co-Authors

Avatar

Lokesh K. Narnoliya

Central Institute of Medicinal and Aromatic Plants

View shared research outputs
Top Co-Authors

Avatar

Rakesh Tuli

Biotechnology Institute

View shared research outputs
Top Co-Authors

Avatar

Narayan Das Chaurasiya

Central Institute of Medicinal and Aromatic Plants

View shared research outputs
Top Co-Authors

Avatar

Payare Lal

Central Institute of Medicinal and Aromatic Plants

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bhawana Mishra

Central Institute of Medicinal and Aromatic Plants

View shared research outputs
Top Co-Authors

Avatar

Smrati Mishra

Council of Scientific and Industrial Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge