Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rajendra N. Damle is active.

Publication


Featured researches published by Rajendra N. Damle.


Journal of Clinical Investigation | 2005

In vivo measurements document the dynamic cellular kinetics of chronic lymphocytic leukemia B cells

Bradley T. Messmer; Davorka Messmer; Steven L. Allen; Jonathan E. Kolitz; Prasad Kudalkar; Denise Cesar; Elizabeth Murphy; Prasad Koduru; Manlio Ferrarini; Simona Zupo; Giovanna Cutrona; Rajendra N. Damle; Tarun Wasil; Kanti R. Rai; Marc K. Hellerstein; Nicholas Chiorazzi

Due to its relatively slow clinical progression, B cell chronic lymphocytic leukemia (B-CLL) is classically described as a disease of accumulation rather than proliferation. However, evidence for various forms of clonal evolution suggests that B-CLL clones may be more dynamic than previously assumed. We used a nonradioactive, stable isotopic labeling method to measure B-CLL cell kinetics in vivo. Nineteen patients drank an aliquot of deuterated water (2H2O) daily for 84 days, and 2H incorporation into the deoxyribose moiety of DNA of newly divided B-CLL cells was measured by gas chromatography/mass spectrometry, during and after the labeling period. Birth rates were calculated from the kinetic profiles. Death rates were defined as the difference between calculated birth and growth rates. These analyses demonstrated that the leukemic cells of each patient had definable and often substantial birth rates, varying from 0.1% to greater than 1.0% of the entire clone per day. Those patients with birth rates greater than 0.35% per day were much more likely to exhibit active or to develop progressive disease than those with lower birth rates Thus, B-CLL is not a static disease that results simply from accumulation of long-lived lymphocytes. Rather, it is a dynamic process composed also of cells that proliferate and die, often at appreciable levels. The extent to which this turnover occurs has not been previously appreciated. A correlation between birth rates and disease activity and progression appears to exist, which may help identify patients at risk for worsening disease in advance of clinical deterioration.


Journal of Experimental Medicine | 2004

Multiple Distinct Sets of Stereotyped Antigen Receptors Indicate a Role for Antigen in Promoting Chronic Lymphocytic Leukemia

Bradley T. Messmer; Emilia Albesiano; Dimitar G. Efremov; Fabio Ghiotto; Steven L. Allen; Jonathan E. Kolitz; Robin Foà; Rajendra N. Damle; Franco Fais; Davorka Messmer; Kanti R. Rai; Manlio Ferrarini; Nicholas Chiorazzi

Previous studies suggest that the diversity of the expressed variable (V) region repertoire of the immunoglobulin (Ig)H chain of B-CLL cells is restricted. Although limited examples of marked constraint in the primary structure of the H and L chain V regions exist, the possibility that this level of restriction is a general principle in this disease has not been accepted. This report describes five sets of patients, mostly with unmutated or minimally mutated IgV genes, with strikingly similar B cell antigen receptors (BCRs) arising from the use of common H and L chain V region gene segments that share CDR3 structural features such as length, amino acid composition, and unique amino acid residues at recombination junctions. Thus, a much more striking degree of structural restriction of the entire BCR and a much higher frequency of receptor sharing exists among patients than appreciated previously. The data imply that either a significant fraction of B-CLL cells was selected by a limited set of antigenic epitopes at some point in their development and/or that they derive from a distinct B cell subpopulation with limited Ig V region diversity. These shared, stereotyped Ig molecules may be valuable probes for antigen identification and important targets for cross-reactive idiotypic therapy.


Blood | 2010

Many chronic lymphocytic leukemia antibodies recognize apoptotic cells with exposed nonmuscle myosin heavy chain IIA: implications for patient outcome and cell of origin

Charles C. Chu; Rosa Catera; Lu Zhang; Sebastien Didier; Briana M. Agagnina; Rajendra N. Damle; Matthew Kaufman; Jonathan E. Kolitz; Steven L. Allen; Kanti R. Rai; Nicholas Chiorazzi

Many B-cell chronic lymphocytic leukemia (CLL) monoclonal antibodies (mAbs) can be grouped into subsets based on nearly identical stereotyped sequences. Subset 6 CLL mAbs recognize nonmuscle myosin heavy chain IIA (MYHIIA). Herein, we report that during apoptosis, MYHIIA becomes exposed on the cell surface of a subgroup of apoptotic cells, allowing subset 6 CLL mAbs to bind with it. Because other non-subset 6 CLL mAbs interact with apoptotic cells, 26 CLL mAbs, including 24 not belonging to subset 6, were tested for reactivity with MYHIIA-exposed apoptotic cells (MEACs). More than 60% of CLL mAbs bound MEACs well; most of these mAbs expressed unmutated IGHV (15 of 16) and belonged to a stereotyped subset (14 of 16). Binding to MEACs inversely correlated with the degree of IGHV mutation. Interestingly, high binding to MEACs significantly correlated with poor patient survival, suggesting that the basis of IGHV mutation status as a CLL prognostic factor reflects antigen binding. Finally, natural antibodies from human serum also reacted with MEACs. Taken together, our data indicate that a large proportion of CLL clones emerge from natural antibody-producing cells expressing immunoglobulins that recognize MEACs, and that this reactivity is associated with poor clinical outcome.


Blood | 2011

CD38 and chronic lymphocytic leukemia: a decade later

Fabio Malavasi; Silvia Deaglio; Rajendra N. Damle; Giovanna Cutrona; Manlio Ferrarini; Nicholas Chiorazzi

This review highlights a decade of investigations into the role of CD38 in CLL. CD38 is accepted as a dependable marker of unfavorable prognosis and as an indicator of activation and proliferation of cells when tested. Leukemic clones with higher numbers of CD38(+) cells are more responsive to BCR signaling and are characterized by enhanced migration. In vitro activation through CD38 drives CLL proliferation and chemotaxis via a signaling pathway that includes ZAP-70 and ERK1/2. Finally, CD38 is under a polymorphic transcriptional control after external signals. Consequently, CD38 appears to be a global molecular bridge to the environment, promoting survival/proliferation over apoptosis. Together, this evidence contributes to the current view of CLL as a chronic disease in which the hosts microenvironment promotes leukemic cell growth and also controls the sequential acquisition and accumulation of genetic alterations. This view relies on the existence of a set of surface molecules, including CD38, which support proliferation and survival of B cells on their way to and after neoplastic transformation. The second decade of studies on CD38 in CLL will tell if the molecule is an effective target for antibody-mediated therapy in this currently incurable leukemia.


Blood | 2009

Novel genomic alterations and clonal evolution in chronic lymphocytic leukemia revealed by representational oligonucleotide microarray analysis (ROMA)

Vladimir Grubor; Alexander Krasnitz; Jennifer Troge; Jennifer L. Meth; B. Lakshmi; Jude Kendall; Boris Yamrom; Garrick Alex; Deepa Pai; Nicholas Navin; Lisa A. Hufnagel; Yoon Lee; Kerry Cook; Steven L. Allen; Kanti R. Rai; Rajendra N. Damle; Carlo Calissano; Nicholas Chiorazzi; Michael Wigler; Diane Esposito

We examined copy number changes in the genomes of B cells from 58 patients with chronic lymphocytic leukemia (CLL) by using representational oligonucleotide microarray analysis (ROMA), a form of comparative genomic hybridization (CGH), at a resolution exceeding previously published studies. We observed at least 1 genomic lesion in each CLL sample and considerable variation in the number of abnormalities from case to case. Virtually all abnormalities previously reported also were observed here, most of which were indeed highly recurrent. We observed the boundaries of known events with greater clarity and identified previously undescribed lesions, some of which were recurrent. We profiled the genomes of CLL cells separated by the surface marker CD38 and found evidence of distinct subclones of CLL within the same patient. We discuss the potential applications of high-resolution CGH analysis in a clinical setting.


Blood | 2009

In vivo intraclonal and interclonal kinetic heterogeneity in B-cell chronic lymphocytic leukemia

Carlo Calissano; Rajendra N. Damle; Gregory M. Hayes; Elizabeth Murphy; Marc K. Hellerstein; Carol Moreno; Cristina Sison; Matthew Kaufman; Jonathan E. Kolitz; Steven L. Allen; Kanti R. Rai; Nicholas Chiorazzi

Clonal evolution and outgrowth of cellular variants with additional chromosomal abnormalities are major causes of disease progression in chronic lymphocytic leukemia (CLL). Because new DNA lesions occur during S phase, proliferating cells are at the core of this problem. In this study, we used in vivo deuterium ((2)H) labeling of CLL cells to better understand the phenotype of proliferating cells in 13 leukemic clones. In each case, there was heterogeneity in cellular proliferation, with a higher fraction of newly produced CD38+ cells compared with CD38- counterparts. On average, there were 2-fold higher percentages of newly born cells in the CD38+ fraction than in CD38- cells; when analyzed on an individual patient basis, CD38+ (2)H-labeled cells ranged from 6.6% to 73%. Based on distinct kinetic patterns, interclonal heterogeneity was also observed. Specifically, 4 patients exhibited a delayed appearance of newly produced CD38+ cells in the blood, higher leukemic cell CXC chemokine receptor 4 (CXCR4) levels, and increased risk for lymphoid organ infiltration and poor outcome. Our data refine the proliferative compartment in CLL based on CD38 expression and suggest a relationship between in vivo kinetics, expression of a protein involved in CLL cell retention and trafficking to solid tissues, and clinical outcome.


Molecular Medicine | 2011

Intraclonal complexity in chronic lymphocytic leukemia: fractions enriched in recently born/divided and older/quiescent cells.

Carlo Calissano; Rajendra N. Damle; Sonia Marsilio; Xiao Jie Yan; Sophia Yancopoulos; Gregory M. Hayes; Claire Emson; Elizabeth Murphy; Marc K. Hellerstein; Cristina Sison; Matthew Kaufman; Jonathan E. Kolitz; Steven L. Allen; Kanti R. Rai; Ivana Ivanovic; Igor Dozmorov; Sergio Roa; Matthew D. Scharff; Wentian Li; Nicholas Chiorazzi

The failure of chemotherapeutic regimens to eradicate cancers often results from the outgrowth of minor subclones with more dangerous genomic abnormalities or with self-renewing capacity. To explore such intratumor complexities in B-cell chronic lymphocytic leukemia (CLL), we measured B-cell kinetics in vivo by quantifying deuterium (2H)-labeled cells as an indicator of a cell that had divided. Separating CLL clones on the basis of reciprocal densities of chemokine (C-X-C motif) receptor 4 (CXCR4) and cluster designation 5 (CD5) revealed that the CXCR4dimCD5bright (proliferative) fraction contained more 2H-labeled DNA and hence divided cells than the CXCR4brightCD5dim (resting) fraction. This enrichment was confirmed by the relative expression of two cell cycle-associated molecules in the same fractions, Ki-67 and minichromosome maintenance protein 6 (MCM6). Comparisons of global gene expression between the CXCR4dimCD5bright and CXCR4brightCD5dim fractions indicated higher levels of pro-proliferation and antiapoptotic genes and genes involved in oxidative injury in the proliferative fraction. An extended immunophenotype was also defined, providing a wider range of surface molecules characteristic of each fraction. These intraclonal analyses suggest a model of CLL cell biology in which the leukemic clone contains a spectrum of cells from the proliferative fraction, enriched in recently divided robust cells that are lymphoid tissue emigrants, to the resting fraction enriched in older, less vital cells that need to immigrate to lymphoid tissue or die. The model also suggests several targets preferentially expressed in the two populations amenable for therapeutic attack. Finally, the study lays the groundwork for future analyses that might provide a more robust understanding of the development and clonal evolution of this currently incurable disease.


Best Practice & Research Clinical Haematology | 2010

Chronic lymphocytic leukaemia: a disease of activated monoclonal B cells

Rajendra N. Damle; Carlo Calissano; Nicholas Chiorazzi

B cell-type chronic lymphocytic leukaemia (CLL) has long been considered a disease of resting lymphocytes. However, cell surface and intracellular phenotypes suggest that most CLL cells are activated cells, although only a small subset progresses beyond the G1 stage of the cell cycle. In addition, traditional teaching says that CLL cells divide rarely, and therefore the build-up of leukaemic cells is due to an inherent defect in cell death. However, in vivo labelling of CLL cells indicates a much more active rate of cell birth than originally estimated, suggesting that CLL is a dynamic disease. Here we review the observations that have led to these altered views of the activation state and proliferative capacities of CLL cells and also provide our interpretation of these observations in light of their potential impact on patients.


Haematologica | 2012

Th17 and non-Th17 interleukin-17-expressing cells in chronic lymphocytic leukemia: delineation, distribution, and clinical relevance

Preetesh Jain; Mohammad Javdan; Franziska K. Feger; Pui Yan Chiu; Cristina Sison; Rajendra N. Damle; Tawfiqul Bhuiya; Filiz Sen; Lynne V. Abruzzo; Jan A. Burger; Andreas Rosenwald; Steven L. Allen; Jonathan E. Kolitz; Kanti R. Rai; Nicholas Chiorazzi; Barbara Sherry

Background The levels and clinical relevance of Th17 cells and other interleukin-17-producing cells have not been analyzed in chronic lymphocytic leukemia. The objective of this study was to quantify blood and tissue levels of Th17 and other interleukin-17-producing cells in patients with this disease and correlate blood levels with clinical outcome. Design and Methods Intracellular interleukin-17A was assessed in blood and splenic mononuclear cells from patients with chronic lymphocytic leukemia and healthy subjects using flow cytometry. Interleukin-17A-producing cells were analyzed in formalin-fixed, paraffin-embedded spleen and lymph node sections using immunohistochemistry and immunofluorescence. Results The absolute numbers of Th17 cells in peripheral blood mononuclear cells and the percentages of Th17 cells in spleen cell suspensions were higher in patients with chronic lymphocytic leukemia than in healthy subjects; in six out of eight paired chronic lymphocytic leukemia blood and spleen sample comparisons, Th17 cells were enriched in spleen suspensions. Circulating Th17 levels correlated with better prognostic markers and longer overall survival of the patients. Two “non-Th17” interleukin-17-expressing cells were identified in chronic lymphocytic leukemia spleens: proliferating cells of the granulocytic lineage and mature mast cells. Granulocytes and mast cells in normal spleens did not express interleukin-17. Conversely, both chronic lymphocytic leukemia and healthy lymph nodes contained similar numbers of interleukin-17+ mast cells as well as Th17 cells. Conclusions Th17 cells are elevated in chronic lymphocytic leukemia patients with better prognostic markers and correlate with longer survival. Furthermore, non-Th17 interleukin-17A-expressing cells exist in chronic lymphocytic leukemia spleens as maturing granulocytes and mature mast cells, suggesting that the microenvironmental milieu in leukemic spleens promotes the recruitment and/or expansion of Th17 and other IL-17-expressing cells. The pathophysiology of Th17 and non-Th17-interleukin-producing cells in chronic lymphocytic leukemia and their distributions and roles in this disease merit further study.


Blood | 2012

IGHV-unmutated and IGHV-mutated chronic lymphocytic leukemia cells produce activation-induced deaminase protein with a full range of biologic functions

Piers E.M. Patten; Charles C. Chu; Emilia Albesiano; Rajendra N. Damle; Xiao Jie Yan; Dorothy Kim; Lu Zhang; Amanda R. Magli; Jacqueline Barrientos; Jonathan E. Kolitz; Steven L. Allen; Kanti R. Rai; Sergio Roa; Patricia K. A. Mongini; Thomas MacCarthy; Matthew D. Scharff; Nicholas Chiorazzi

Clonal evolution occurs during the course of chronic lymphocytic leukemia (CLL) and activation-induced deaminase (AID) could influence this process. However, this possibility has been questioned in CLL because the number of circulating AID mRNA(+) cells is exceedingly low; synthesis of AID protein by blood CLL cells has not been demonstrated; the full range of AID functions is lacking in unmutated CLL (U-CLL), and no prospective analysis linking AID expression and disease severity has been reported. The results of the present study show that circulating CLL cells and those within secondary lymphoid tissues can make AID mRNA and protein. This production is related to cell division because more AID mRNA was detected in recently divided cells and AID protein was limited to the dividing fraction and was up-regulated on induction of cell division. AID protein was functional because AID(+) dividing cells exhibited more double-stranded DNA breaks, IGH class switching, and new IGHV-D-J mutations. Each of these actions was documented in U-CLL and mutated CLL (M-CLL). Furthermore, AID protein was associated with worse patient outcome and adverse cytogenetics. We conclude that the production of fully functional AID protein by U-CLL and M-CLL cells could be involved in clonal evolution of the disease.

Collaboration


Dive into the Rajendra N. Damle's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kanti R. Rai

North Shore-LIJ Health System

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Matthew Kaufman

The Feinstein Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar

Sonal Temburni

The Feinstein Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carlo Calissano

The Feinstein Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar

Charles C. Chu

The Feinstein Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar

Emilia Albesiano

North Shore-LIJ Health System

View shared research outputs
Researchain Logo
Decentralizing Knowledge