Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rajendran Rajeswaran is active.

Publication


Featured researches published by Rajendran Rajeswaran.


PLOS Pathogens | 2012

Primary and secondary siRNAs in geminivirus-induced gene silencing.

Michael Aregger; Basanta Kumar Borah; Jonathan Seguin; Rajendran Rajeswaran; Ekaterina G. Gubaeva; Anna S. Zvereva; David Windels; Franck Vazquez; Todd Blevins; Laurent Farinelli; Mikhail M. Pooggin

In plants, RNA silencing-based antiviral defense is mediated by Dicer-like (DCL) proteins producing short interfering (si)RNAs. In Arabidopsis infected with the bipartite circular DNA geminivirus Cabbage leaf curl virus (CaLCuV), four distinct DCLs produce 21, 22 and 24 nt viral siRNAs. Using deep sequencing and blot hybridization, we found that viral siRNAs of each size-class densely cover the entire viral genome sequences in both polarities, but highly abundant siRNAs correspond primarily to the leftward and rightward transcription units. Double-stranded RNA precursors of viral siRNAs can potentially be generated by host RDR-dependent RNA polymerase (RDR). However, genetic evidence revealed that CaLCuV siRNA biogenesis does not require RDR1, RDR2, or RDR6. By contrast, CaLCuV derivatives engineered to target 30 nt sequences of a GFP transgene by primary viral siRNAs trigger RDR6-dependent production of secondary siRNAs. Viral siRNAs targeting upstream of the GFP stop codon induce secondary siRNAs almost exclusively from sequences downstream of the target site. Conversely, viral siRNAs targeting the GFP 3′-untranslated region (UTR) induce secondary siRNAs mostly upstream of the target site. RDR6-dependent siRNA production is not necessary for robust GFP silencing, except when viral siRNAs targeted GFP 5′-UTR. Furthermore, viral siRNAs targeting the transgene enhancer region cause GFP silencing without secondary siRNA production. We conclude that the majority of viral siRNAs accumulating during geminiviral infection are RDR1/2/6-independent primary siRNAs. Double-stranded RNA precursors of these siRNAs are likely generated by bidirectional readthrough transcription of circular viral DNA by RNA polymerase II. Unlike transgenic mRNA, geminiviral mRNAs appear to be poor templates for RDR-dependent production of secondary siRNAs.


PLOS ONE | 2014

De Novo Reconstruction of Consensus Master Genomes of Plant RNA and DNA Viruses from siRNAs

Jonathan Seguin; Rajendran Rajeswaran; Nachelli Malpica-López; Robert R. Martin; Kristin D. Kasschau; Valerian V. Dolja; Patricia Otten; Laurent Farinelli; Mikhail M. Pooggin

Virus-infected plants accumulate abundant, 21–24 nucleotide viral siRNAs which are generated by the evolutionary conserved RNA interference (RNAi) machinery that regulates gene expression and defends against invasive nucleic acids. Here we show that, similar to RNA viruses, the entire genome sequences of DNA viruses are densely covered with siRNAs in both sense and antisense orientations. This implies pervasive transcription of both coding and non-coding viral DNA in the nucleus, which generates double-stranded RNA precursors of viral siRNAs. Consistent with our finding and hypothesis, we demonstrate that the complete genomes of DNA viruses from Caulimoviridae and Geminiviridae families can be reconstructed by deep sequencing and de novo assembly of viral siRNAs using bioinformatics tools. Furthermore, we prove that this ‘siRNA omics’ approach can be used for reliable identification of the consensus master genome and its microvariants in viral quasispecies. Finally, we utilized this approach to reconstruct an emerging DNA virus and two viroids associated with economically-important red blotch disease of grapevine, and to rapidly generate a biologically-active clone representing the wild type master genome of Oilseed rape mosaic virus. Our findings show that deep siRNA sequencing allows for de novo reconstruction of any DNA or RNA virus genome and its microvariants, making it suitable for universal characterization of evolving viral quasispecies as well as for studying the mechanisms of siRNA biogenesis and RNAi-based antiviral defense.


Nucleic Acids Research | 2012

Sequencing of RDR6-dependent double-stranded RNAs reveals novel features of plant siRNA biogenesis

Rajendran Rajeswaran; Michael Aregger; Anna S. Zvereva; Basanta Kumar Borah; Ekaterina G. Gubaeva; Mikhail M. Pooggin

Biogenesis of trans-acting siRNAs (tasiRNAs) is initiated by miRNA-directed cleavage of TAS gene transcripts and requires RNA-dependent RNA polymerase 6 (RDR6) and Dicer-like 4 (DCL4). Here, we show that following miR173 cleavage the entire polyadenylated parts of Arabidopsis TAS1a/b/c and TAS2 transcripts are converted by RDR6 to double-stranded (ds)RNAs. Additionally, shorter dsRNAs are produced following a second cleavage directed by a TAS1c-derived siRNA. This tasiRNA and miR173 guide Argonaute 1 complexes to excise the segments from TAS2 and three TAS1 transcripts including TAS1c itself to be converted to dsRNAs, which restricts siRNA production to a region between the two cleavage sites. TAS1c is also feedback regulated by a cis-acting siRNA. We conclude that TAS1c generates a master siRNA that controls a complex network of TAS1/TAS2 siRNA biogenesis and gene regulation. TAS1/TAS2 short dsRNAs produced in this network are processed by DCL4 from both ends in distinct registers, which increases repertoires of tasiRNAs.


Nucleic Acids Research | 2012

RDR6-mediated synthesis of complementary RNA is terminated by miRNA stably bound to template RNA

Rajendran Rajeswaran; Mikhail M. Pooggin

RNA-dependent RNA polymerase RDR6 is involved in the biogenesis of plant trans-acting siRNAs. This process is initiated by miRNA-directed and Argonaute (AGO) protein-mediated cleavage of TAS gene transcripts. One of the cleavage products is converted by RDR6 to double-stranded (ds)RNA, the substrate for Dicer-like 4 (DCL4). Interestingly, TAS3 transcript contains two target sites for miR390::AGO7 complexes, 5′-non-cleavable and 3′-cleavable. Here we show that RDR6-mediated synthesis of complementary RNA starts at a third nucleotide of the cleaved TAS3 transcript and is terminated by the miR390::AGO7 complex stably bound to the non-cleavable site. Thus, the resulting dsRNA has a short, 2-nt, 3′-overhang and a long, 220-nt, 5′-overhang of the template strand. The short, but not long, overhang is optimal for DCL4 binding, which ensures dsRNA processing from one end into phased siRNA duplexes with 2-nt 3′-overhangs.


Molecular Plant-microbe Interactions | 2007

The mungbean yellow mosaic begomovirus transcriptional activator protein transactivates the viral promoter-driven transgene and causes toxicity in transgenic tobacco plants.

Rajendran Rajeswaran; Sukumaran Sunitha; Padubidri V. Shivaprasad; Mikhail M. Pooggin; Thomas Hohn; Karuppannan Veluthambi

The Begomovirus transcriptional activator protein (TrAP/AC2/C2) is a multifunctional protein which activates the viral late gene promoters, suppresses gene silencing, and determines pathogenicity. To study TrAP-mediated transactivation of a stably integrated gene, we generated transgenic tobacco plants with a Mungbean yellow mosaic virus (MYMV) AV1 late gene promoter-driven reporter gene and supertransformed them with the MYMV TrAP gene driven by a strong 35S promoter. We obtained a single supertransformed plant with an intact 35S-TrAP gene that activated the reporter gene 2.5-fold. However, 10 of the 11 supertransformed plants did not have the TrAP region of the T-DNA, suggesting the likely toxicity of TrAP in plants. Upon transformation of wild-type tobacco plants with the TrAP gene, six of the seven transgenic plants obtained had truncated T-DNAs which lacked TrAP. One plant, which had the intact TrAP gene, did not express TrAP. The apparent toxic effect of the TrAP transgene was abolished by mutations in its nuclear-localization signal or zinc-finger domain and by deletion of its activation domain. Therefore, all three domains of TrAP, which are required for transactivation and suppression of gene silencing, also are needed for its toxic effect.


PLOS Pathogens | 2012

Short ORF-Dependent Ribosome Shunting Operates in an RNA Picorna-Like Virus and a DNA Pararetrovirus that Cause Rice Tungro Disease

Mikhail M. Pooggin; Rajendran Rajeswaran; Mikhail Schepetilnikov; Lyubov A. Ryabova

Rice tungro disease is caused by synergistic interaction of an RNA picorna-like virus Rice tungro spherical virus (RTSV) and a DNA pararetrovirus Rice tungro bacilliform virus (RTBV). It is spread by insects owing to an RTSV-encoded transmission factor. RTBV has evolved a ribosome shunt mechanism to initiate translation of its pregenomic RNA having a long and highly structured leader. We found that a long leader of RTSV genomic RNA remarkably resembles the RTBV leader: both contain several short ORFs (sORFs) and potentially fold into a large stem-loop structure with the first sORF terminating in front of the stem basal helix. Using translation assays in rice protoplasts and wheat germ extracts, we show that, like in RTBV, both initiation and proper termination of the first sORF translation in front of the stem are required for shunt-mediated translation of a reporter ORF placed downstream of the RTSV leader. The base pairing that forms the basal helix is required for shunting, but its sequence can be varied. Shunt efficiency in RTSV is lower than in RTBV. But in addition to shunting the RTSV leader sequence allows relatively efficient linear ribosome migration, which also contributes to translation initiation downstream of the leader. We conclude that RTSV and RTBV have developed a similar, sORF-dependent shunt mechanism possibly to adapt to the host translation system and/or coordinate their life cycles. Given that sORF-dependent shunting also operates in a pararetrovirus Cauliflower mosaic virus and likely in other pararetroviruses that possess a conserved shunt configuration in their leaders it is tempting to propose that RTSV may have acquired shunt cis-elements from RTBV during their co-existence.


New Phytologist | 2016

Viral protein suppresses oxidative burst and salicylic acid‐dependent autophagy and facilitates bacterial growth on virus‐infected plants

Anna S. Zvereva; Victor Golyaev; Silvia Turco; Ekaterina G. Gubaeva; Rajendran Rajeswaran; Mikhail Schepetilnikov; Ola Srour; Lyubov A. Ryabova; Thomas Boller; Mikhail M. Pooggin

Virus interactions with plant silencing and innate immunity pathways can potentially alter the susceptibility of virus-infected plants to secondary infections with nonviral pathogens. We found that Arabidopsis plants infected with Cauliflower mosaic virus (CaMV) or transgenic for CaMV silencing suppressor P6 exhibit increased susceptibility to Pseudomonas syringae pv. tomato (Pst) and allow robust growth of the Pst mutant hrcC-, which cannot deploy effectors to suppress innate immunity. The impaired antibacterial defense correlated with the suppressed oxidative burst, reduced accumulation of the defense hormone salicylic acid (SA) and diminished SA-dependent autophagy. The viral protein domain required for suppression of these plant defense responses is dispensable for silencing suppression but essential for binding and activation of the plant target-of-rapamycin (TOR) kinase which, in its active state, blocks cellular autophagy and promotes CaMV translation. Our findings imply that CaMV P6 is a versatile viral effector suppressing both silencing and innate immunity. P6-mediated suppression of oxidative burst and SA-dependent autophagy may predispose CaMV-infected plants to bacterial infection.


Archive | 2012

Role of Virus-Derived Small RNAs in Plant Antiviral Defense: Insights from DNA Viruses

Rajendran Rajeswaran; Mikhail M. Pooggin

In plants and some animals, viral infection triggers production of virus-derived short interfering (si)RNAs (vsRNAs) by the host gene-silencing machinery, which is thought to restrict virus replication and spread. To counter the silencing-based host defense and thereby establish successful infection, viruses encode suppressor proteins that block different steps of siRNA biogenesis or action. Plants infected with DNA viruses accumulate three major size classes of vsRNAs that are processed from double-stranded RNA precursors by Dicer-like (DCL) proteins. In a model plant Arabidopsis thaliana possessing four DCLs, DCL4 and DCL1 generate 21-nt vsRNAs, DCL2 generates 22-nt vsRNAs, and DCL3 generates 24-nt vsRNAs. In contrast, RNA virus infections are associated with production of DCL4-dependent 21-nt vsRNAs and DCL2-dependent 22-nt vsRNAs. This reflects the difference in life cycles of plant DNA and RNA viruses: the former are transcribed in the nucleus where DCL1 and DCL3 normally generate endogenous miRNAs and heterochromatic siRNAs, respectively, whereas the latter are generally restricted to the cytoplasm. To function in silencing, like endogenous miRNAs and siRNAs, vsRNAs must get associated with Argonaute (AGO) family proteins and guide the resulting RNA-induced silencing complexes to complementary RNA or DNA targets. The nuclear-localized AGO proteins act in transcriptional gene silencing and heterochromatin formation through siRNA-directed DNA methylation, whereas the cytoplasmic AGOs act in posttranscriptional gene silencing through miRNA/siRNA-directed mRNA cleavage and/or translational repression. The plant silencing machinery has a remarkable ability to mediate siRNA amplification and systemic spread; these processes involve RNA-dependent RNA polymerases and plant-specific DNA-dependent RNA polymerases Pol IV and Pol V. Thus, amplification and spread of vsRNAs may also play a role in plant antiviral defense. Here we review the accumulating evidence on the role of nuclear and cytoplasmic components of the plant silencing machinery in the biogenesis and action of vsRNAs. We also describe silencing suppression and evasion strategies evolved by plant viruses and illustrate how viruses and their suppressor proteins could be used as a tool to discover novel features of the plant silencing system.


Molecular Plant-microbe Interactions | 2014

Interactions of Rice Tungro Bacilliform Pararetrovirus and Its Protein P4 with Plant RNA-Silencing Machinery

Rajendran Rajeswaran; Victor Golyaev; Jonathan Seguin; Anna S. Zvereva; Laurent Farinelli; Mikhail M. Pooggin

Small interfering RNA (siRNA)-directed gene silencing plays a major role in antiviral defense. Virus-derived siRNAs inhibit viral replication in infected cells and potentially move to neighboring cells, immunizing them from incoming virus. Viruses have evolved various ways to evade and suppress siRNA production or action. Here, we show that 21-, 22-, and 24-nucleotide (nt) viral siRNAs together constitute up to 19% of total small RNA population of Oryza sativa plants infected with Rice tungro bacilliform virus (RTBV) and cover both strands of the RTBV DNA genome. However, viral siRNA hotspots are restricted to a short noncoding region between transcription and reverse-transcription start sites. This region generates double-stranded RNA (dsRNA) precursors of siRNAs and, in pregenomic RNA, forms a stable secondary structure likely inaccessible to siRNA-directed cleavage. In transient assays, RTBV protein P4 suppressed cell-to-cell spread of silencing but enhanced cell-autonomous silencing, which correlated with reduced 21-nt siRNA levels and increased 22-nt siRNA levels. Our findings imply that RTBV generates decoy dsRNA that restricts siRNA production to the structured noncoding region and thereby protects other regions of the viral genome from repressive action of siRNAs, while the viral protein P4 interferes with cell-to-cell spread of antiviral silencing.


Journal of Virology | 2014

Evasion of Short Interfering RNA-Directed Antiviral Silencing in Musa acuminata Persistently Infected with Six Distinct Banana Streak Pararetroviruses

Rajendran Rajeswaran; Jonathan Seguin; Matthieu Chabannes; Pierre-Olivier Duroy; Nathalie Laboureau; Laurent Farinelli; Marie-Line Iskra-Caruana; Mikhail M. Pooggin

ABSTRACT Vegetatively propagated crop plants often suffer from infections with persistent RNA and DNA viruses. Such viruses appear to evade the plant defenses that normally restrict viral replication and spread. The major antiviral defense mechanism is based on RNA silencing generating viral short interfering RNAs (siRNAs) that can potentially repress viral genes posttranscriptionally through RNA cleavage and transcriptionally through DNA cytosine methylation. Here we examined the RNA silencing machinery of banana plants persistently infected with six pararetroviruses after many years of vegetative propagation. Using deep sequencing, we reconstructed consensus master genomes of the viruses and characterized virus-derived and endogenous small RNAs. Consistent with the presence of endogenous siRNAs that can potentially establish and maintain DNA methylation, the banana genomic DNA was extensively methylated in both healthy and virus-infected plants. A novel class of abundant 20-nucleotide (nt) endogenous small RNAs with 5′-terminal guanosine was identified. In all virus-infected plants, 21- to 24-nt viral siRNAs accumulated at relatively high levels (up to 22% of the total small RNA population) and covered the entire circular viral DNA genomes in both orientations. The hotspots of 21-nt and 22-nt siRNAs occurred within open reading frame (ORF) I and II and the 5′ portion of ORF III, while 24-nt siRNAs were more evenly distributed along the viral genome. Despite the presence of abundant viral siRNAs of different size classes, the viral DNA was largely free of cytosine methylation. Thus, the virus is able to evade siRNA-directed DNA methylation and thereby avoid transcriptional silencing. This evasion of silencing likely contributes to the persistence of pararetroviruses in banana plants. IMPORTANCE We report that DNA pararetroviruses in Musa acuminata banana plants are able to evade DNA cytosine methylation and transcriptional gene silencing, despite being targeted by the host silencing machinery generating abundant 21- to 24-nucleotide short interfering RNAs. At the same time, the banana genomic DNA is extensively methylated in both healthy and virus-infected plants. Our findings shed light on the siRNA-generating gene silencing machinery of banana and provide a possible explanation why episomal pararetroviruses can persist in plants whereas true retroviruses with an obligatory genome-integration step in their replication cycle do not exist in plants.

Collaboration


Dive into the Rajendran Rajeswaran's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge