Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rajesh C. Miranda is active.

Publication


Featured researches published by Rajesh C. Miranda.


The Journal of Neuroscience | 1994

Estrogen differentially regulates estrogen and nerve growth factor receptor mRNAs in adult sensory neurons

Farida Sohrabji; Rajesh C. Miranda; C. D. Toran-Allerand

We have previously shown that neurons in the basal forebrain colocalize the neurotrophin receptor p75NGFR and estrogen receptors. The present study was designed to examine (1) if neural neurotrophin targets respond to estrogen as a general phenotypic feature and (2) if NGF receptor mRNAs are regulated by estrogen, using a prototypical target of NGF, the dorsal root ganglion (DRG) (sensory) neuron. We demonstrate, for the first time, the presence of estrogen receptor mRNA and protein (binding sites) in adult female rat DRG. Moreover, estrogen receptor mRNA expression, while present in DRG neurons from both the ovariectomized (OVX; estrogen deficient) and intact female rat, was downregulated, as in the adult CNS, during proestrus (high estrogen levels) and in OVX animals replaced with proestrus levels of estrogen, as compared to OVX controls. In contrast, although the mRNAs for the NGF receptors p75NGFR and trkA were also expressed in DRG neurons from OVX and intact animals, expression of both NGF receptor mRNAs was upregulated in sensory neurons during proestrus, as compared to the OVX condition. Estrogen replacement, on the other hand, resulted in a transient downregulation of p75NGFR mRNA and a time-dependent upregulation of trkA mRNA. Estrogen regulation of NGF receptor mRNA in adult peripheral neural targets of the neurotrophins supports the hypothesis that estrogen may regulate neuronal sensitivity to neurotrophins such as NGF and may be an important mediator of neurotrophin actions in normal neural function and following neural trauma.


The Journal of Neuroscience | 2007

Competing Interactions between Micro-RNAs Determine Neural Progenitor Survival and Proliferation after Ethanol Exposure: Evidence from an Ex Vivo Model of the Fetal Cerebral Cortical Neuroepithelium

Pratheesh Sathyan; Honey B. Golden; Rajesh C. Miranda

The fetal brain is sensitive to a variety of teratogens, including ethanol. We showed previously that ethanol induced mitosis and stem cell maturation, but not death, in fetal cerebral cortex-derived progenitors. We tested the hypothesis that micro-RNAs (miRNAs) could mediate the teratogenic effects of ethanol in a fetal mouse cerebral cortex-derived neurosphere culture model. Ethanol, at a level attained by alcoholics, significantly suppressed the expression of four miRNAs, miR-21, -335, -9, and -153, whereas a lower ethanol concentration, attainable during social drinking, induced miR-335 expression. A GABAA receptor-dependent mechanism mediated miR-21, but not miR-335 suppression, suggesting that divergent mechanisms regulate ethanol-sensitive miRNAs. Antisense-mediated suppression of miR-21 expression resulted in apoptosis, suggesting that miR-21 is an antiapoptotic factor. miR-335 knockdown promoted cell proliferation and prevented death induced by concurrently suppressing miR-21, indicating that miR-335 is a proapoptotic, antimitogenic factor whose actions are antagonistic to miR-21. Computational analyses identified two genes, Jagged-1, a Notch-receptor ligand, and embryonic-lethal abnormal vision, Drosophila-like 2 (ELAVL2), a brain-specific regulator of RNA stability, as presumptive targets of three of four ethanol-sensitive micro-RNAs. Combined knockdown of miR-335, -21, and -153 significantly increased Jagged-1 mRNA. Furthermore, ethanol induced both Jagged-1 and ELAVL2 mRNA. The collective suppression of micro-RNAs is consistent with ethanol induction of cell cycle and neuroepithelial maturation in the absence of apoptosis. These data identify a role for micro-RNAs as epigenetic intermediaries, which permit teratogens to shape complex, divergent developmental processes, and additionally demonstrate that coordinately regulated miRNAs exhibit both functional synergy and antagonism toward each other.


The Journal of Neuroscience | 1999

Fas/Apo [Apoptosis]-1 and Associated Proteins in the Differentiating Cerebral Cortex: Induction of Caspase-Dependent Cell Death and Activation of NF-κB

Zulfiqar F. Cheema; Stephen B Wade; Masataka Sata; Kenneth Walsh; Farida Sohrabji; Rajesh C. Miranda

The developing cerebral cortex undergoes a period of substantial cell death. The present studies examine the role of the suicide receptor Fas/Apo[apoptosis]-1 in cerebral cortical development. Fas mRNA and protein are transiently expressed in subsets of cells within the developing rat cerebral cortex during the peak period of apoptosis. Fas-immunoreactive cells were localized in close proximity to Fas ligand (FasL)-expressing cells. The Fas-associated signaling protein receptor interacting protein (RIP) was expressed by some Fas-expressing cells, whereas Fas-associated death domain (FADD) was undetectable in the early postnatal cerebral cortex. FLICE-inhibitory protein (FLIP), an inhibitor of Fas activation, was also expressed in the postnatal cerebral cortex. Fas expression was more ubiquitous in embryonic cortical neuroblasts in dissociated culture compared to in situ within the developing brain, suggesting that the environmental milieu partly suppresses Fas expression at this developmental stage. Furthermore, FADD, RIP, and FLIP were also expressed by subsets of dissociated cortical neuroblasts in culture. Fas activation by ligand (FasL) or anti-Fas antibody induced caspase-dependent cell death in primary embryonic cortical neuroblast cultures. The activation of Fas was also accompanied by a rapid downregulation of Fas receptor expression, non-cell cycle-related incorporation of nucleic acids and nuclear translocation of the RelA/p65 subunit of the transcription factor NF-κB. Together, these data suggest that adult cortical cell number may be established, in part, by an active process of receptor-mediated cell suicide, initiatedin situ by killer (FasL-expressing) cells and that Fas may have functions in addition to suicide in the developing brain.


PLOS ONE | 2012

An Antagomir to MicroRNA Let7f Promotes Neuroprotection in an Ischemic Stroke Model

Amutha Selvamani; Pratheesh Sathyan; Rajesh C. Miranda; Farida Sohrabji

We previously showed that middle-aged female rats sustain a larger infarct following experimental stroke as compared to younger female rats, and paradoxically, estrogen treatment to the older group is neurotoxic. Plasma and brain insulin-like growth factor-1 (IGF-1) levels decrease with age. However, IGF-1 infusion following stroke, prevents estrogen neurotoxicity in middle-aged female rats. IGF1 is neuroprotective and well tolerated, but also has potentially undesirable side effects. We hypothesized that microRNAs (miRNAs) that target the IGF-1 signaling family for translation repression could be alternatively suppressed to promote IGF-1-like neuroprotection. Here, we report that two conserved IGF pathway regulatory microRNAs, Let7f and miR1, can be inhibited to mimic and even extend the neuroprotection afforded by IGF-1. Anti-mir1 treatment, as late as 4 hours following ischemia, significantly reduced cortical infarct volume in adult female rats, while anti-Let7 robustly reduced both cortical and striatal infarcts, and preserved sensorimotor function and interhemispheric neural integration. No neuroprotection was observed in animals treated with a brain specific miRNA unrelated to IGF-1 (anti-miR124). Remarkably, anti-Let7f was only effective in intact females but not males or ovariectomized females indicating that the gonadal steroid environment critically modifies miRNA action. Let7f is preferentially expressed in microglia in the ischemic hemisphere and confirmed in ex vivo cultures of microglia obtained from the cortex. While IGF-1 was undetectable in microglia harvested from the non-ischemic hemisphere, IGF-1 was expressed by microglia obtained from the ischemic cortex and was further elevated by anti-Let7f treatment. Collectively these data support a novel miRNA-based therapeutic strategy for neuroprotection following stroke.


Hormones and Behavior | 1994

Interactions of Estrogen with the Neurotrophins and Their Receptors during Neural Development

Rajesh C. Miranda; Farida Sohrabji; Dominique Toran-Allerand

We are interested in examining mechanisms underlying estrogen actions during neuronal differentiation in the central nervous system (CNS). Our research has focused on one possible mechanism, the developmental interactions between estrogen and the neurotrophins (nerve growth factor [NGF], brain derived neurotrophic factor [BDNF] and neurotrophin-3 [NT-3]). Using combined isotopic and non-isotopic in situ hybridization, we found that neurons in developmental estrogen targets (e.g., the cerebral cortex), co-localized mRNAs for the neurotrophins (NGF or BDNF) with their cognate receptors (p75NGFR [the pan-neurotrophin receptor] and trkA or trkB [the tyrosine kinase receptors]), suggesting a localization of neurotrophin-autocrine loops to these estrogen-sensitive neurons. In contrast, the basal forebrain, which is estrogen-sensitive in the adult and during development, only expressed neurotrophin receptor mRNAs, suggesting that this region was not an autocrine neurotrophin target. We examined the potential for developmental estrogen-neurotrophin interactions, using a model neurotrophin-sensitive system, i.e., differentiating PC12 cells. NGF significantly increased estrogen receptor density in PC12 cells. Reciprocally, estrogen up-regulated trkA mRNA and transiently down-regulated p75NGFR mRNA, suggesting that estrogen may increase the efficiency of NGF binding in PC12 cells. Similar estrogen-dependent regulation of NGF receptor mRNAs were also observed in the adult dorsal root ganglia, suggesting that estrogen may regulate NGF sensitivity in adult neurotrophin targets as well. Such estrogen-neurotrophin interactions may have an important role during differentiation and in the adult, following injury.


Developmental Brain Research | 2000

Glial-derived neurotrophic factor (GDNF) prevents ethanol-induced apoptosis and JUN kinase phosphorylation

Robert E. McAlhany; James R. West; Rajesh C. Miranda

Ethanol exposure during neural development leads to substantial neuronal loss in multiple brain regions. Our previous research indicated that exogenous glial-derived neurotrophic factor (GDNF) attenuated ethanol-induced cerebellar Purkinje cell loss. Additionally, ethanol decreased GDNF release suggesting that ethanol disrupts GDNF-signaling pathways. The present experiments utilized a homogeneous GDNF-responsive neuroblastoma cell line (SK-N-SH) to test the hypothesis that exogenous GDNF could attenuate ethanol-induced cell loss by suppressing cytotoxic signaling pathways and cell suicide. We measured two independently regulated markers of apoptosis, DNA fragmentation and the externalization of phosphatidylserine to the outer cell membrane leaflet. Ethanol induced a dose-related increase in both apoptosis and necrosis. Lower concentrations of ethanol (34 and 68 mM) specifically increased DNA fragmentation, while all concentrations (up to 137 mM) increased phosphatidylserine translocation, suggesting that ethanol induction of apoptosis is not a unitary process. Furthermore, only higher concentrations of ethanol (103 and 137 mM) induced necrosis. Additionally, ethanol specifically induced phosphorylation of c-jun N-terminal-kinase (JNK), a mitogen-activated protein (MAP) kinase selectively associated with apoptosis. In contrast, ethanol did not alter the phosphorylation of another MAP kinase, the extracellular signal-regulated kinases (ERK) that mediate cell survival. Thus, ethanol activated specific intracellular cell death-associated pathways and induced cell death. GDNF, in turn, prevented both ethanol-induced apoptosis and the activation of the death-associated JNK cascade. Therefore, GDNF may regulate multiple pathways to prevent ethanol-induced cell loss.


Brain Research | 1992

Cellular variations in estrogen receptor mRNA translation in the developing brain: evidence from combined [125I]estrogen autoradiography and non-isotopic in situ hybridization histochemistry.

C. Dominique Toran-Allerand; Rajesh C. Miranda; Richard B. Hochberg; Neil J. MacLusky

The spatial distribution of cells in the adult rodent forebrain which express estrogen receptor mRNA, as shown by in situ hybridization histochemistry with isotopically-labeled probes, has been reported to overlap with regions that are known targets of estrogen and which bind estrogen. The extent to which detection of estrogen receptor mRNA within developing forebrain neurons of the postnatal day 10-12 female rat is accompanied by translation into estrogen binding sites was investigated by combining [125I]estrogen autoradiography with non-isotopic (digoxigenin) in situ hybridization, using a 48-base oligodeoxyribonucleotide probe encoding a sequence of the estrogen-binding domain of rat uterine estrogen receptor cDNA. Estrogen receptor mRNA and estrogen binding sites appeared to be restricted to neurons. No mRNA or binding was seen in ependymal cells. Cells expressing estrogen receptor mRNA were widely distributed in the developing rat forebrain and were found in brain regions generally corresponding to those previously shown in the adult, with the addition of some regions not previously described, such as the medial habenula and dorsal endopiriform nucleus. Although there was widespread overlapping of estrogen receptor mRNA expression with known estrogen binding sites, there were regional and cellular variations in the extent of receptor mRNA translation. This pattern was true for developing forebrain regions previously defined as estrogen receptor-containing (hypothalamus, preoptic area, medial and lateral septum, vertical and horizontal nuclei of the diagonal band, cerebral cortex, hippocampus and amygdala) as well as for regions heretofore not considered estrogen targets (the thalamus, dorsal endopiriform nucleus, claustrum, ventral pallidum/substantia innominata and the basal nucleus of Meynert) or characterized as estrogen-responsive in the adult without previously documented estrogen binding [caudate-putamen (striatum)]. While estrogen binding and receptor mRNA expression always co-localized, neurons expressing estrogen receptor mRNA did not always exhibit ligand binding and there was no clear-cut relationship between the intensity of the hybridization signal and estrogen binding. Little, however, is known about translational control of estrogen receptor expression in the brain. Localization of estrogen binding sites to regions not generally considered targets of estrogen would appear to reflect the greater sensitivity of the iodinated ligand than the tritiated estrogens more commonly used for autoradiography. Non-isotopic in situ hybridization histochemistry combined with [125I]estrogen autoradiography represents a very powerful tool with which to study regulation of estrogen receptor gene expression at the single cell level with an exceptional degree of cellular and anatomical resolution.(ABSTRACT TRUNCATED AT 400 WORDS)


Molecular and Cellular Neuroscience | 1993

Presumptive Estrogen Target Neurons Express mRNAs for both the Neurotrophins and Neurotrophin Receptors: A Basis for Potential Developmental Interactions of Estrogen with the Neurotrophins.

Rajesh C. Miranda; Farida Sohrabji; C. Dominique Toran-Allerand

Estrogen and the neurotrophins regulate development, survival, and plasticity of the nervous system. We have shown previously that neurons of the developing basal forebrain and their cortical and hippocampal targets express estrogen receptor mRNA and protein. Furthermore, subsets of neurons within these regions colocalize mRNAs for neurotrophin receptors (p75(NGFR), (trk) A, and (trk)B) and their cognate ligands (NGF, BDNF, and NT-3). Using combined isotopic/nonisotopic in situ hybridization histochemistry, we now demonstrate that mRNAs for the neurotrophins as well as their receptors colocalize to individual estrogen receptor mRNA-containing neurons in these regions of the developing rodent forebrain. The patterns of colocalization were both region and mRNA specific. These results suggest a potential for interactions between estrogen and the neurotrophins, including possible estrogen-stimulated, neurotrophin-mediated autocrine mechanisms that may regulate neuronal differentiation and survival during development.


BMC Neuroscience | 2005

Ethanol induces cell-cycle activity and reduces stem cell diversity to alter both regenerative capacity and differentiation potential of cerebral cortical neuroepithelial precursors.

Daniel R. Santillano; Leena S. Kumar; Terasa L. Prock; Cynthia Camarillo; Joseph D. Tingling; Rajesh C. Miranda

BackgroundThe fetal cortical neuroepithelium is a mosaic of distinct progenitor populations that elaborate diverse cellular fates. Ethanol induces apoptosis and interferes with the survival of differentiating neurons. However, we know little about ethanols effects on neuronal progenitors. We therefore exposed neurosphere cultures from fetal rat cerebral cortex, to varying ethanol concentrations, to examine the impact of ethanol on stem cell fate.ResultsEthanol promoted cell cycle progression, increased neurosphere number and increased diversity in neurosphere size, without inducing apoptosis. Unlike controls, dissociated cortical progenitors exposed to ethanol exhibited morphological evidence for asymmetric cell division, and cells derived from ethanol pre-treated neurospheres exhibited decreased proliferation capacity. Ethanol significantly reduced the numbers of cells expressing the stem cell markers CD117, CD133, Sca-1 and ABCG2, without decreasing nestin expression. Furthermore, ethanol-induced neurosphere proliferation was not accompanied by a commensurate increase in telomerase activity. Finally, cells derived from ethanol-pretreated neurospheres exhibited decreased differentiation in response to retinoic acid.ConclusionThe reduction in stem cell number along with a transient ethanol-driven increase in cell proliferation, suggests that ethanol promotes stem to blast cell maturation, ultimately depleting the reserve proliferation capacity of neuroepithelial cells. However, the lack of a concomitant change in telomerase activity suggests that neuroepithelial maturation is accompanied by an increased potential for genomic instability. Finally, the cellular phenotype that emerges from ethanol pre-treated, stem cell depleted neurospheres is refractory to additional differentiation stimuli, suggesting that ethanol exposure ablates or delays subsequent neuronal differentiation.


Neuroscience | 2011

MICRORNA DYSREGULATION FOLLOWING SPINAL CORD CONTUSION: IMPLICATIONS FOR NEURAL PLASTICITY AND REPAIR

Eric R. Strickland; Michelle A. Hook; Sridevi Balaraman; John R. Huie; James W. Grau; Rajesh C. Miranda

Spinal cord injury (SCI) is medically and socioeconomically debilitating. Currently, there is a paucity of effective therapies that promote regeneration at the injury site, and limited understanding of mechanisms that can be utilized to therapeutically manipulate spinal cord plasticity. MicroRNAs (miRNAs) constitute novel targets for therapeutic intervention to promote repair and regeneration. Microarray comparisons of the injury sites of contused and sham rat spinal cords, harvested 4 and 14 days following SCI, showed that 32 miRNAs, including miR124, miR129, and miR1, were significantly down-regulated, whereas SNORD2, a translation-initiation factor, was induced. Additionally, three miRNAs including miR21 were significantly induced, indicating adaptive induction of an anti-apoptotic response in the injured cord. Validation of miRNA expression by qRT-PCR and in situ hybridization assays revealed that the influence of SCI on miRNA expression persists up to 14 days and expands both anteriorly and caudally beyond the lesion site. Specifically, changes in miR129-2 and miR146a expression significantly explained the variability in initial injury severity, suggesting that these specific miRNAs may serve as biomarkers and therapeutic targets for SCI. Moreover, the pattern of miRNA changes coincided spatially and temporally with the appearance of SOX2, nestin, and REST immunoreactivity, suggesting that aberrant expression of these miRNAs may not only reflect the emergence of stem cell niches, but also the reemergence in surviving neurons of a pre-neuronal phenotype. Finally, bioinformatics analysis of validated miRNA-targeted genes indicates that miRNA dysregulation may explain apoptosis susceptibility and aberrant cell cycle associated with a loss of neuronal identity, which underlies the pathogenesis of secondary SCI.

Collaboration


Dive into the Rajesh C. Miranda's collaboration.

Researchain Logo
Decentralizing Knowledge