Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rajesh Ghai is active.

Publication


Featured researches published by Rajesh Ghai.


Journal of Molecular Recognition | 2012

Applications of isothermal titration calorimetry in pure and applied research--survey of the literature from 2010.

Rajesh Ghai; Robert J. Falconer; Brett M. Collins

Isothermal titration calorimetry (ITC) is a biophysical technique for measuring the formation and dissociation of molecular complexes and has become an invaluable tool in many branches of science from cell biology to food chemistry. By measuring the heat absorbed or released during bond formation, ITC provides accurate, rapid, and label‐free measurement of the thermodynamics of molecular interactions. In this review, we survey the recent literature reporting the use of ITC and have highlighted a number of interesting studies that provide a flavour of the diverse systems to which ITC can be applied. These include measurements of protein‐protein and protein‐membrane interactions required for macromolecular assembly, analysis of enzyme kinetics, experimental validation of molecular dynamics simulations, and even in manufacturing applications such as food science. Some highlights include studies of the biological complex formed by Staphylococcus aureus enterotoxin C3 and the murine T‐cell receptor, the mechanism of membrane association of the Parkinsons disease‐associated protein α‐synuclein, and the role of non‐specific tannin‐protein interactions in the quality of different beverages. Recent developments in automation are overcoming limitations on throughput imposed by previous manual procedures and promise to greatly extend usefulness of ITC in the future. We also attempt to impart some practical advice for getting the most out of ITC data for those researchers less familiar with the method. Copyright


Proceedings of the National Academy of Sciences of the United States of America | 2011

Phox homology band 4.1/ezrin/radixin/moesin-like proteins function as molecular scaffolds that interact with cargo receptors and Ras GTPases

Rajesh Ghai; Mehdi Mobli; Suzanne J. Norwood; Andrea Bugarcic; Rohan D. Teasdale; Glenn F. King; Brett M. Collins

Following endocytosis, the fates of receptors, channels, and other transmembrane proteins are decided via specific endosomal sorting pathways, including recycling to the cell surface for continued activity. Two distinct phox-homology (PX)-domain-containing proteins, sorting nexin (SNX) 17 and SNX27, are critical regulators of recycling from endosomes to the cell surface. In this study we demonstrate that SNX17, SNX27, and SNX31 all possess a novel 4.1/ezrin/radixin/moesin (FERM)-like domain. SNX17 has been shown to bind to Asn-Pro-Xaa-Tyr (NPxY) sequences in the cytoplasmic tails of cargo such as LDL receptors and the amyloid precursor protein, and we find that both SNX17 and SNX27 display similar affinities for NPxY sorting motifs, suggesting conserved functions in endosomal recycling. Furthermore, we show for the first time that all three proteins are able to bind the Ras GTPase through their FERM-like domains. These interactions place the PX-FERM-like proteins at a hub of endosomal sorting and signaling processes. Studies of the SNX17 PX domain coupled with cellular localization experiments reveal the mechanistic basis for endosomal localization of the PX-FERM-like proteins, and structures of SNX17 and SNX27 determined by small angle X-ray scattering show that they adopt non-self-assembling, modular structures in solution. In summary, this work defines a novel family of proteins that participate in a network of interactions that will impact on both endosomal protein trafficking and compartment specific Ras signaling cascades.


Proceedings of the National Academy of Sciences of the United States of America | 2014

A unique PDZ domain and arrestin-like fold interaction reveals mechanistic details of endocytic recycling by SNX27-retromer

Matthew Gallon; Thomas Clairfeuille; Florian Steinberg; Caroline Mas; Rajesh Ghai; Richard B. Sessions; Rohan D. Teasdale; Brett M. Collins; Peter J. Cullen

Significance Cell surface proteins are regulated by a constant cycle of internalization and recycling from intracellular compartments called endosomes. From these organelles, two protein sorting platforms, sorting nexin 27 (SNX27) and the retromer complex, play a critical role in the retrieval of various proteins responsible for ion transport, glucose metabolism, neurotransmission, and other cell functions. Based on the three-dimensional structure of SNX27 in complex with the retromer subunit VPS26, we define the mechanism by which these proteins cooperate to drive endosomal cargo sorting. Retromer and SNX27 dysfunction is implicated in various disorders, including diabetes, Down syndrome, Parkinson disease, and Alzheimer’s disease, and this work provides important insights into the assembly of this essential endosomal sorting machinery. The sorting nexin 27 (SNX27)-retromer complex is a major regulator of endosome-to-plasma membrane recycling of transmembrane cargos that contain a PSD95, Dlg1, zo-1 (PDZ)-binding motif. Here we describe the core interaction in SNX27-retromer assembly and its functional relevance for cargo sorting. Crystal structures and NMR experiments reveal that an exposed β-hairpin in the SNX27 PDZ domain engages a groove in the arrestin-like structure of the vacuolar protein sorting 26A (VPS26A) retromer subunit. The structure establishes how the SNX27 PDZ domain simultaneously binds PDZ-binding motifs and retromer-associated VPS26. Importantly, VPS26A binding increases the affinity of the SNX27 PDZ domain for PDZ- binding motifs by an order of magnitude, revealing cooperativity in cargo selection. With disruption of SNX27 and retromer function linked to synaptic dysfunction and neurodegenerative disease, our work provides the first step, to our knowledge, in the molecular description of this important sorting complex, and more broadly describes a unique interaction between a PDZ domain and an arrestin-like fold.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Structural basis for endosomal trafficking of diverse transmembrane cargos by PX-FERM proteins.

Rajesh Ghai; Andrea Bugarcic; Huadong Liu; Suzanne J. Norwood; Sune Skeldal; Elizabeth J. Coulson; Shawn S.-C. Li; Rohan D. Teasdale; Brett M. Collins

Transit of proteins through the endosomal organelle following endocytosis is critical for regulating the homeostasis of cell-surface proteins and controlling signal transduction pathways. However, the mechanisms that control these membrane-transport processes are poorly understood. The Phox-homology (PX) domain-containing proteins sorting nexin (SNX) 17, SNX27, and SNX31 have emerged recently as key regulators of endosomal recycling and bind conserved Asn-Pro-Xaa-Tyr–sorting signals in transmembrane cargos via an atypical band, 4.1/ezrin/radixin/moesin (FERM) domain. Here we present the crystal structure of the SNX17 FERM domain bound to the sorting motif of the P-selectin adhesion protein, revealing both the architecture of the atypical FERM domain and the molecular basis for recognition of these essential sorting sequences. We further show that the PX-FERM proteins share a promiscuous ability to bind a wide array of putative cargo molecules, including receptor tyrosine kinases, and propose a model for their coordinated molecular interactions with membrane, cargo, and regulatory proteins.


PLOS ONE | 2011

VPS29 is not an active metallo-phosphatase but is a rigid scaffold required for retromer interaction with accessory proteins.

James D. Swarbrick; Daniel J. Shaw; Sandeep Chhabra; Rajesh Ghai; Eugene Valkov; Suzanne J. Norwood; Matthew N.J. Seaman; Brett M. Collins

VPS29 is a key component of the cargo-binding core complex of retromer, a protein assembly with diverse roles in transport of receptors within the endosomal system. VPS29 has a fold related to metal-binding phosphatases and mediates interactions between retromer and other regulatory proteins. In this study we examine the functional interactions of mammalian VPS29, using X-ray crystallography and NMR spectroscopy. We find that although VPS29 can coordinate metal ions Mn2+ and Zn2+ in both the putative active site and at other locations, the affinity for metals is low, and lack of activity in phosphatase assays using a putative peptide substrate support the conclusion that VPS29 is not a functional metalloenzyme. There is evidence that structural elements of VPS29 critical for binding the retromer subunit VPS35 may undergo both metal-dependent and independent conformational changes regulating complex formation, however studies using ITC and NMR residual dipolar coupling (RDC) measurements show that this is not the case. Finally, NMR chemical shift mapping indicates that VPS29 is able to associate with SNX1 via a conserved hydrophobic surface, but with a low affinity that suggests additional interactions will be required to stabilise the complex in vivo. Our conclusion is that VPS29 is a metal ion-independent, rigid scaffolding domain, which is essential but not sufficient for incorporation of retromer into functional endosomal transport assemblies.


Nature Communications | 2017

ORP5 and ORP8 bind phosphatidylinositol-4, 5-biphosphate (PtdIns(4,5)P 2) and regulate its level at the plasma membrane.

Rajesh Ghai; Ximing Du; Huan Wang; Jiangqing Dong; Charles Ferguson; Andrew J. Brown; Robert G. Parton; Jia-Wei Wu; Hongyuan Yang

ORP5 and ORP8, members of the oxysterol-binding protein (OSBP)-related proteins (ORP) family, are endoplasmic reticulum membrane proteins implicated in lipid trafficking. ORP5 and ORP8 are reported to localize to endoplasmic reticulum–plasma membrane junctions via binding to phosphatidylinositol-4-phosphate (PtdIns(4)P), and act as a PtdIns(4)P/phosphatidylserine counter exchanger between the endoplasmic reticulum and plasma membrane. Here we provide evidence that the pleckstrin homology domain of ORP5/8 via PtdIns(4,5)P2, and not PtdIns(4)P binding mediates the recruitment of ORP5/8 to endoplasmic reticulum–plasma membrane contact sites. The OSBP-related domain of ORP8 can extract and transport multiple phosphoinositides in vitro, and knocking down both ORP5 and ORP8 in cells increases the plasma membrane level of PtdIns(4,5)P2 with little effect on PtdIns(4)P. Overall, our data show, for the first time, that phosphoinositides other than PtdIns(4)P can also serve as co-exchangers for the transport of cargo lipids by ORPs.ORP5/8 are endoplasmic reticulum (ER) membrane proteins implicated in lipid trafficking that localize to ER-plasma membrane (PM) contacts and maintain membrane homeostasis. Here the authors show that PtdIns(4,5)P2 plays a critical role in the targeting and function of ORP5/8 at the PM.


Journal of Cell Science | 2015

Phosphoinositide binding by the SNX27 FERM domain regulates its localization at the immune synapse of activated T-cells

Rajesh Ghai; María Tello-Lafoz; Suzanne J. Norwood; Zhe Yang; Thomas Clairfeuille; Rohan D. Teasdale; Isabel Mérida; Brett M. Collins

ABSTRACT Sorting nexin 27 (SNX27) controls the endosomal-to-cell-surface recycling of diverse transmembrane protein cargos. Crucial to this function is the recruitment of SNX27 to endosomes which is mediated by the binding of phosphatidylinositol-3-phosphate (PtdIns3P) by its phox homology (PX) domain. In T-cells, SNX27 localizes to the immunological synapse in an activation-dependent manner, but the molecular mechanisms underlying SNX27 translocation remain to be clarified. Here, we examined the phosphoinositide-lipid-binding capabilities of full-length SNX27, and discovered a new PtdInsP-binding site within the C-terminal 4.1, ezrin, radixin, moesin (FERM) domain. This binding site showed a clear preference for bi- and tri-phosphorylated phophoinositides, and the interaction was confirmed through biophysical, mutagenesis and modeling approaches. At the immunological synapse of activated T-cells, cell signaling regulates phosphoinositide dynamics, and we find that perturbing phosphoinositide binding by the SNX27 FERM domain alters the SNX27 distribution in both endosomal recycling compartments and PtdIns(3,4,5)P3-enriched domains of the plasma membrane during synapse formation. Our results suggest that SNX27 undergoes dynamic partitioning between different membrane domains during immunological synapse assembly, and underscore the contribution of unique lipid interactions for SNX27 orchestration of cargo trafficking.


Journal of Biological Chemistry | 2014

Structural Basis for Different Phosphoinositide Specificities of the PX Domains of Sorting Nexins Regulating G-protein Signaling

Caroline Mas; Suzanne J. Norwood; Andrea Bugarcic; Genevieve Kinna; Natalya Leneva; Oleksiy Kovtun; Rajesh Ghai; Lorena E. Ona Yanez; Jasmine L. Davis; Rohan D. Teasdale; Brett M. Collins

Background: RGS-PX proteins are regulators of signaling and trafficking within the endosomal system. Results: A structural basis for membrane interactions of RGS-PX proteins is established. Conclusion: The four mammalian paralogues display different membrane interaction properties. Significance: RGS-PX proteins possess a conserved functional architecture in all eukaryotes. Sorting nexins (SNXs) or phox homology (PX) domain containing proteins are central regulators of cell trafficking and signaling. A subfamily of PX domain proteins possesses two unique PX-associated domains, as well as a regulator of G protein-coupled receptor signaling (RGS) domain that attenuates Gαs-coupled G protein-coupled receptor signaling. Here we delineate the structural organization of these RGS-PX proteins, revealing a protein family with a modular architecture that is conserved in all eukaryotes. The one exception to this is mammalian SNX19, which lacks the typical RGS structure but preserves all other domains. The PX domain is a sensor of membrane phosphoinositide lipids and we find that specific sequence alterations in the PX domains of the mammalian RGS-PX proteins, SNX13, SNX14, SNX19, and SNX25, confer differential phosphoinositide binding preferences. Although SNX13 and SNX19 PX domains bind the early endosomal lipid phosphatidylinositol 3-phosphate, SNX14 shows no membrane binding at all. Crystal structures of the SNX19 and SNX14 PX domains reveal key differences, with alterations in SNX14 leading to closure of the binding pocket to prevent phosphoinositide association. Our findings suggest a role for alternative membrane interactions in spatial control of RGS-PX proteins in cell signaling and trafficking.


Small GTPases | 2011

PX-FERM proteins: A link between endosomal trafficking and signaling?

Rajesh Ghai; Brett M. Collins

Endosomes are the primary organelle where decisions are made as to whether endocytosed proteins will be sorted into degradative trafficking pathways or recycled back to the plasma membrane. This balance between cellular uptake and recycling regulates the plasma membrane composition and is therefore critical for many cellular processes such as nutrient uptake, neuronal transmission and cell migration.1 In addition to its well-known role in membrane trafficking, the endosome is increasingly being recognized as a critical cellular domain for regulated cell signaling. We recently showed that several proteins that regulate endosomal recycling, SNX17, SNX27 and SNX31 are structurally and functionally related.2 These proteins use an unusual FERM domain to bind specific endosomal cargo molecules, and most interestingly, we also found that these proteins use the same FERM domain to associate with the activated Ras small GTPase. Here we speculate on the potential dual role of the PX-FERM proteins in endosomal transport and as scaffolds that may be involved in endosomal Ras signaling processes.


Applied Physics Letters | 2008

Magnetophoresis of flexible DNA-based dumbbell structures

Bakir Babic; Rajesh Ghai; Krassen Dimitrov

Controlled movement and manipulation of magnetic micro- and nanostructures using magnetic forces can give rise to important applications in biomedecine, diagnostics, and immunology. We report controlled magnetophoresis and stretching, in aqueous solution, of a DNA-based dumbbell structure containing magnetic and diamagnetic microspheres. The velocity and stretching of the dumbbell were experimentally measured and correlated with a theoretical model based on the forces acting on individual magnetic beads or the entire dumbbell structures. The results show that precise and predictable manipulation of dumbbell structures is achievable and can potentially be applied to immunomagnetic cell separators.

Collaboration


Dive into the Rajesh Ghai's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bakir Babic

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

Mehdi Mobli

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Isabel Mérida

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

María Tello-Lafoz

Spanish National Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge