Rajeshwar Awatramani
Northwestern University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rajeshwar Awatramani.
PLOS Biology | 2007
Raja Kittappa; Wendy W Chang; Rajeshwar Awatramani; Ronald D. G. McKay
Parkinson disease affects more than 1% of the population over 60 y old. The dominant models for Parkinson disease are based on the use of chemical toxins to kill dopamine neurons, but do not address the risk factors that normally increase with age. Forkhead transcription factors are critical regulators of survival and longevity. The forkhead transcription factor, foxa2, is specifically expressed in adult dopamine neurons and their precursors in the medial floor plate. Gain- and loss-of-function experiments show this gene, foxa2, is required to generate dopamine neurons during fetal development and from embryonic stem cells. Mice carrying only one copy of the foxa2 gene show abnormalities in motor behavior in old age and an associated progressive loss of dopamine neurons. Manipulating forkhead function may regulate both the birth of dopamine neurons and their spontaneous death, two major goals of regenerative medicine.
Nature Neuroscience | 2008
Anna F. Farago; Rajeshwar Awatramani; Michael M. Scott; Evan S. Deneris; Susan M. Dymecki
Central serotonin-producing neurons are heterogeneous—differing in location, morphology, neurotoxin sensitivity and associated clinical disorders—but the underpinnings of this heterogeneity are largely unknown, as are the markers that distinguish physiological subtypes of serotonergic neurons. Here we redefined serotonergic subtypes on the basis of genetic programs that are differentially enacted in progenitor cells. We uncovered a molecular framework for the serotonergic system that, having genetic lineages as its basis, is likely to have physiological relevance and will permit access to genetically defined subtypes for manipulation.
Nature Neuroscience | 2009
Milan Joksimovic; Beth Yun; Raja Kittappa; Angela Anderegg; Wendy W Chang; Makoto M. Taketo; Ronald D. G. McKay; Rajeshwar Awatramani
The floor plate, an essential ventral midline organizing center that produces the morphogen Shh, has distinct properties along the neuraxis. The neurogenic potential of the floor plate and its underlying mechanisms remain unknown. Using Shh as a driver for lineage analysis, we found that the mouse midbrain, but not the hindbrain, floor plate is neurogenic, giving rise to dopamine (DA) neurons. Distinct spatiotemporal Shh and Wnt expression may distinguish the neurogenetic potential of these structures. We discovered an inhibitory role for Shh: removal of Shh resulted in neurogenesis from the hindbrain midline and, conversely, high doses of Shh inhibited proliferation and DA neuron production in midbrain cultures. We found that Wnt/beta-catenin signaling is necessary and sufficient for antagonizing Shh, DA progenitor marker induction and promotion of dopaminergic neurogenesis. These findings demonstrate how the dynamic interplay of canonical Wnt/beta-catenin signaling and Shh may orchestrate floor plate neurogenesis or a lack thereof.
Neuron | 2006
Anna F. Farago; Rajeshwar Awatramani; Susan M. Dymecki
The cochlear nuclear complex (CN) is the entry point for central auditory processing. Although constituent neurons have been studied physiologically, their embryological origins and molecular profiles remain obscure. Applying intersectional and subtractive genetic fate mapping approaches, we show that this complex develops modularly from genetically separable progenitor populations arrayed as rostrocaudal microdomains within and outside the hindbrain (lower) rhombic lip (LRL). The dorsal CN subdivision, structurally and topographically similar to the cerebellum, arises from microdomains unexpectedly caudal and noncontiguous to cerebellar primordium; ventral CN subdivisions arise from more rostral LRL. Magnocellular regions receive contributions from LRL and coaxial non-lip progenitors; contrastingly, ensheathing granule cells derive principally from LRL. Also LRL-derived and molecularly similar to CN granule cells are precerebellar mossy fiber neurons; surprisingly, these ostensibly intertwined populations have separable origins and adjacent but segregated migratory streams. Together, these findings provide new platforms for investigating the development and evolution of auditory and cerebellar systems.
Nature Genetics | 2003
Rajeshwar Awatramani; Philippe Soriano; Carolyn I. Rodriguez; Jia Jia Mai; Susan M. Dymecki
The hindbrain roof plate and choroid plexus are essential organizing centers for inducing dorsal neuron fates and sustaining neuron function. To map the formation of these structures, we developed a broadly applicable, high resolution, recombinase-based method for mapping the fate of cells originating from coordinates defined by intersecting combinations of expressed genes. Using this method, we show that distinct regions of hindbrain roof plate originate from discrete subdomains of rhombencephalic neuroectoderm expressing Wnt1; that choroid plexus, a secretory epithelium important for patterning later-formed hindbrain structures and maintaining neuron function, derives from the same embryonic primordium as the hindbrain roof plate; and that, unlike the floor plate, these dorsal organizing centers develop in a patterned, segmental manner, built from lineage-restricted compartments. Our data suggest that the roof plate and choroid plexus may be formed of functional units that are capable of differentially organizing the generation of distinct neuronal cell types at different axial levels.
The Journal of Neuroscience | 2006
Daniela Menichella; Marta Majdan; Rajeshwar Awatramani; Daniel A. Goodenough; Erich E. Sirkowski; Steven S. Scherer; David L. Paul
Mice lacking the K+ channel Kir4.1 or both connexin32 (Cx32) and Cx47 exhibit myelin-associated vacuoles, raising the possibility that oligodendrocytes, and the connexins they express, contribute to recycling the K+ evolved during neuronal activity. To study this possibility, we first examined the effect of neuronal activity on the appearance of vacuoles in mice lacking both Cx32 and Cx47. The size and number of myelin vacuoles was dramatically increased when axonal activity was increased, by either a natural stimulus (eye opening) or pharmacological treatment. Conversely, myelin vacuoles were dramatically reduced when axonal activity was suppressed. Second, we used genetic complementation to test for a relationship between the function of Kir4.1 and oligodendrocyte connexins. In a Cx32-null background, haploinsufficiency of either Cx47 or Kir4.1 did not affect myelin, but double heterozygotes developed vacuoles, consistent with the idea that oligodendrocyte connexins and Kir4.1 function in a common pathway. Together, these results implicate oligodendrocytes and their connexins as having critical roles in the buffering of K+ released during neuronal activity.
Neuron | 2005
Rebecca L. Landsberg; Rajeshwar Awatramani; Nina L. Hunter; Anna F. Farago; Heather J. DiPietrantonio; Carolyn I. Rodriguez; Susan M. Dymecki
The lower rhombic lip (LRL) is a germinal zone in the dorsal hindbrain productive of tangentially migrating neurons, streaming extramurally (mossy fiber neurons) or intramurally (climbing fiber neurons). Here we show that LRL territory, operationally defined by Wnt1 expression, is parceled into molecular subdomains predictive of cell fate. Progressing dorsoventrally, Lmx1a and Gdf7 expression identifies the primordium for hindbrain choroid plexus epithelial cells; Math1, for mossy fiber neurons; and immediately ventral to Math1 yet within Wnt1(+) territory, a climbing fiber primordium dominated by Ngn1-expressing cells. Elimination of Pax6 results in expansion of this Ngn1(+) progenitor pool and reduction in the Math1(+) pool, with accompanying later enlargement of the climbing fiber nucleus and reductions in mossy fiber nuclei. Pax6 loss also disrupts Msx expression cell-nonautonomously, suggesting Pax6 may influence LRL progenitor identity indirectly through potentiating BMP signaling. These studies suggest that underlying the diversity and proportions of fates produced by the LRL is a precise suborganization regulated by Pax6.
Cell Reports | 2014
Jean Francois Poulin; Jian Zou; Janelle Drouin-Ouellet; Kwang-Youn Kim; Francesca Cicchetti; Rajeshwar Awatramani
Effective approaches to neuropsychiatric disorders require detailed understanding of the cellular composition and circuitry of the complex mammalian brain. Here, we present a paradigm for deconstructing the diversity of neurons defined by a specific neurotransmitter using a microfluidic dynamic array to simultaneously evaluate the expression of 96 genes in single neurons. With this approach, we successfully identified multiple molecularly distinct dopamine neuron subtypes and localized them in the adult mouse brain. To validate the anatomical and functional correlates of molecular diversity, we provide evidence that one Vip+ subtype, located in the periaqueductal region, has a discrete projection field within the extended amygdala. Another Aldh1a1+ subtype, located in the substantia nigra, is especially vulnerable in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of Parkinsons disease. Overall, this rapid, cost-effective approach enables the identification and classification of multiple dopamine neuron subtypes, with distinct molecular, anatomical, and functional properties.
Stem Cells | 2009
Lixin Kan; Yijie Liu; Tammy McGuire; Diana M. Palila Berger; Rajeshwar Awatramani; Susan M. Dymecki; John A. Kessler
Heterotopic ossification (HO), the abnormal formation of true marrow‐containing bone within extraskeletal soft tissues, is a serious bony disorder that may be either acquired or hereditary. We utilized an animal model of the genetic disorder fibrodysplasia ossificans progressiva to examine the cellular mechanisms underlying HO. We found that HO in these animals was triggered by soft tissue injuries and that the effects were mediated by macrophages. Spreading of HO beyond the initial injury site was mediated by an abnormal adaptive immune system. These observations suggest that dysregulation of local stem/progenitor cells could be a common cellular mechanism for typical HO irrespective of the signal initiating the bone formation. STEM CELLS 2009;27:150–156
Proceedings of the National Academy of Sciences of the United States of America | 2009
Milan Joksimovic; Angela Anderegg; Anil K. Roy; Laura Campochiaro; Beth Yun; Raja Kittappa; Ronald D. G. McKay; Rajeshwar Awatramani
Midbrain dopamine neurons (mDA) are important regulators of diverse physiological functions, including movement, attention, and reward behaviors. Accordingly, aberrant function of dopamine neurons underlies a wide spectrum of disorders, such as Parkinsons disease (PD), dystonia, and schizophrenia. The distinct functions of the dopamine system are carried out by neuroanatomically discrete subgroups of dopamine neurons, which differ in gene expression, axonal projections, and susceptibility in PD. The developmental underpinnings of this heterogeneity are undefined. We have recently shown that in the embryonic CNS, mDA originate from the midbrain floor plate, a ventral midline structure that is operationally defined by the expression of the molecule Shh. Here, we develop these findings to reveal that in the embryonic midbrain, the spatiotemporally dynamic Shh domain defines multiple progenitor pools. We deduce 3 distinct progenitor pools, medial, intermediate, and lateral, which contribute to different mDA clusters. The earliest progenitors to express Shh, here referred to as the medial pool, contributes neurons to the rostral linear nucleus and mDA of the ventral tegmental area/interfascicular regions, but remarkably, little to the substantia nigra pars compacta. The intermediate Shh+ progenitors give rise to neurons of all dopaminergic nuclei, including the SNpc. The last and lateral pool of Shh+ progenitors generates a cohort that populates the red nucleus, Edinger Westphal nucleus, and supraoculomotor nucleus and cap. Subsequently, these lateral Shh+ progenitors produce mDA. This refined ontogenetic definition will expand understanding of dopamine neuron biology and selective susceptibility, and will impact stem cell-derived therapies and models for PD.