Rajikala Suganthan
Oslo University Hospital
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rajikala Suganthan.
Nature | 2016
John Arne Dahl; Inkyung Jung; Håvard Aanes; Gareth D. Greggains; Adeel Manaf; Mads Lerdrup; Guoqiang Li; Samantha Kuan; Bin Li; Ah Young Lee; Sebastian Preissl; Ingunn Jermstad; Mads Haugland Haugen; Rajikala Suganthan; Magnar Bjørås; Klaus Hansen; Knut Tomas Dalen; Peter Fedorcsak; Bing Ren; Arne Klungland
Maternal-to-zygotic transition (MZT) is essential for the formation of a new individual, but is still poorly understood despite recent progress in analysis of gene expression and DNA methylation in early embryogenesis. Dynamic histone modifications may have important roles in MZT, but direct measurements of chromatin states have been hindered by technical difficulties in profiling histone modifications from small quantities of cells. Recent improvements allow for 500 cell-equivalents of chromatin per reaction, but require 10,000 cells for initial steps or require a highly specialized microfluidics device that is not readily available. We developed a micro-scale chromatin immunoprecipitation and sequencing (μChIP–seq) method, which we used to profile genome-wide histone H3 lysine methylation (H3K4me3) and acetylation (H3K27ac) in mouse immature and metaphase II oocytes and in 2-cell and 8-cell embryos. Notably, we show that ~22% of the oocyte genome is associated with broad H3K4me3 domains that are anti-correlated with DNA methylation. The H3K4me3 signal becomes confined to transcriptional-start-site regions in 2-cell embryos, concomitant with the onset of major zygotic genome activation. Active removal of broad H3K4me3 domains by the lysine demethylases KDM5A and KDM5B is required for normal zygotic genome activation and is essential for early embryo development. Our results provide insight into the onset of the developmental program in mouse embryos and demonstrate a role for broad H3K4me3 domains in MZT.
The Journal of Neuroscience | 2011
Wei Wang; Ying Esbensen; David Kunke; Rajikala Suganthan; Lyudmila I. Rachek; Magnar Bjørås; Lars Eide
The mitochondrial DNA (mtDNA) of neural stem cells (NSCs) is vulnerable to oxidation damage. Subtle manipulations of the cellular redox state affect mtDNA integrity in addition to regulating the NSC differentiation lineage, suggesting a molecular link between mtDNA integrity and regulation of differentiation. Here we show that 8-oxoguanine DNA glycosylase (OGG1) is essential for repair of mtDNA damage and NSC viability during mitochondrial oxidative stress. Differentiating neural cells from ogg1−/− knock-out mice spontaneously accumulate mtDNA damage and concomitantly shift their differentiation direction toward an astrocytic lineage, similar to wt NSCs subjected to mtDNA damaging insults. Antioxidant treatments reversed mtDNA damage accumulation and separately increased neurogenesis in ogg1−/− cells. NSCs from a transgenic ogg1−/− mouse expressing mitochondrially targeted human OGG1 were protected from mtDNA damage during differentiation, and displayed elevated neurogenesis. The underlying mechanisms for this shift in differentiation direction involve the astrogenesis promoting Sirt1 via an increased NAD/NADH ratio in ogg1−/− cells. Redox manipulations to alter mtDNA damage level correspondingly activated Sirt1 in both cell types. Our results demonstrate for the first time the interdependence between mtDNA integrity and NSC differentiation fate, suggesting that mtDNA damage is the primary signal for the elevated astrogliosis and lack of neurogenesis seen during repair of neuronal injury.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Yngve Sejersted; Gunn A. Hildrestrand; David Kunke; Veslemøy Rolseth; Silje Z. Krokeide; Christine G. Neurauter; Rajikala Suganthan; Monica Atneosen-Åsegg; Aaron M. Fleming; Ola Didrik Saugstad; Cynthia J. Burrows; Luisa Luna; Magnar Bjørås
Neural stem/progenitor cell proliferation and differentiation are required to replace damaged neurons and regain brain function after hypoxic-ischemic events. DNA base lesions accumulating during hypoxic-ischemic stress are removed by DNA glycosylases in the base-excision repair pathway to prevent cytotoxicity and mutagenesis. Expression of the DNA glycosylase endonuclease VIII-like 3 (Neil3) is confined to regenerative subregions in the embryonic and perinatal brains. Here we show profound neuropathology in Neil3-knockout mice characterized by a reduced number of microglia and loss of proliferating neuronal progenitors in the striatum after hypoxia-ischemia. In vitro expansion of Neil3-deficient neural stem/progenitor cells revealed an inability to augment neurogenesis and a reduced capacity to repair for oxidative base lesions in single-stranded DNA. We propose that Neil3 exercises a highly specialized function through accurate molecular repair of DNA in rapidly proliferating cells.
Cell Reports | 2012
Christine Elisabeth Regnell; Gunn A. Hildrestrand; Yngve Sejersted; Tirill Medin; Olve Moldestad; Veslemøy Rolseth; Silje Z. Krokeide; Rajikala Suganthan; Luisa Luna; Magnar Bjørås; Linda H. Bergersen
Accumulation of oxidative DNA damage has been proposed as a potential cause of age-related cognitive decline. The major pathway for removal of oxidative DNA base lesions is base excision repair, which is initiated by DNA glycosylases. In mice, Neil3 is the main DNA glycosylase for repair of hydantoin lesions in single-stranded DNA of neural stem/progenitor cells, promoting neurogenesis. Adult neurogenesis is crucial for maintenance of hippocampus-dependent functions involved in behavior. Herein, behavioral studies reveal learning and memory deficits and reduced anxiety-like behavior in Neil3(-/-) mice. Neural stem/progenitor cells from aged Neil3(-/-) mice show impaired proliferative capacity and reduced DNA repair activity. Furthermore, hippocampal neurons in Neil3(-/-) mice display synaptic irregularities. It appears that Neil3-dependent repair of oxidative DNA damage in neural stem/progenitor cells is required for maintenance of adult neurogenesis to counteract the age-associated deterioration of cognitive performance.
DNA Repair | 2012
Ruth Halsne; Ying Esbensen; Wei Wang; Katja Scheffler; Rajikala Suganthan; Magnar Bjørås; Lars Eide
Reactive oxygen species (ROS) are formed as natural byproducts during aerobic metabolism and readily induce premutagenic base lesions in the DNA. The 8-oxoguanine DNA glycosylase (OGG1) and MutY homolog 1 (MYH) synergistically prevent mutagenesis and cancer formation in mice. Their localization in the mitochondria as well as in the nucleus suggests that mutations in mitochondrial DNA (mtDNA) contribute to the carcinogenesis in the myh⁻/⁻/ogg1⁻/⁻ double knockout mouse. In order to test this hypothesis, we analyzed mtDNA mutagenesis and mitochondrial function in young (1month) and adult (6months) wt and myh⁻/⁻/ogg1⁻/⁻ mice. To our surprise, the absence of OGG1 and MYH had no impact on mtDNA mutation rates in these mice, even at the onset of cancer. This indicates that mtDNA mutagenesis is not responsible for the carcinogenesis of myh⁻/⁻/ogg1⁻/⁻ mice. In line with these results, mitochondrial function was unaffected in the cancerous tissues liver and lung, whereas a significant reduction in respiration capacity was observed in brain mitochondria from the adult myh⁻/⁻/ogg1⁻/⁻ mouse. The reduced respiration capacity correlated with a specific reduction (-25%) in complex I biochemical activity in brain mitochondria. Our results demonstrate that mtDNA mutations are not associated with cancer development in myh⁻/⁻/ogg1⁻/⁻ mice, and that impairment of mitochondrial function in brain could be linked to nuclear DNA mutations in this strain. OGG1 and MYH appear to be dispensable for antimutator function in mitochondria.
Biochimica et Biophysica Acta | 2013
Veslemøy Rolseth; Silje Z. Krokeide; David Kunke; Christine Gran Neurauter; Rajikala Suganthan; Yngve Sejersted; Gunn A. Hildrestrand; Magnar Bjørås; Luisa Luna
7,8-Dihydro-8-oxoguanine (8-oxoG) is one of the most common oxidative base lesions in normal tissues induced by a variety of endogenous and exogenous agents. Hydantoins are products of 8-oxoG oxidation and as 8-oxoG, they have been shown to be mutagenic lesions. Oxidative DNA damage has been implicated in the etiology of various age-associated pathologies, such as cancer, cardiovascular diseases, arthritis, and several neurodegenerative diseases. The mammalian endonuclease VIII-like 3 (Neil3) is one of the four DNA glycosylases found to recognize and remove hydantoins in the first step of base excision repair (BER) pathway. We have generated mice lacking Neil3 and by using total cell extracts we demonstrate that Neil3 is the main DNA glycosylase that incises hydantoins in single stranded DNA in tissues. Using the neurosphere culture system as a model to study neural stem/progenitor (NSPC) cells we found that lack of Neil3 impaired self renewal but did not affect differentiation capacity. Proliferation was also reduced in mouse embryonic fibroblasts (MEFs) derived from Neil3(-/-) embryos and these cells were sensitive to both the oxidative toxicant paraquat and interstrand cross-link (ICL)-inducing agent cisplatin. Our data support the involvement of Neil3 in removal of replication blocks in proliferating cells.
Cell Reports | 2015
Monica D. Bjørge; Gunn A. Hildrestrand; Katja Scheffler; Rajikala Suganthan; Veslemøy Rolseth; Anna Kuśnierczyk; Alexander D. Rowe; Cathrine Broberg Vågbø; Susanne Vetlesen; Lars Eide; Geir Slupphaug; Yusaku Nakabeppu; Timothy W. Bredy; Arne Klungland; Magnar Bjørås
Ogg1 and Mutyh DNA glycosylases cooperate to prevent mutations caused by 8-oxoG, a major premutagenic DNA lesion associated with cognitive decline. We have examined behavior and cognitive function in mice deficient of these glycosylases. Ogg1(-/-)Mutyh(-/-) mice were more active and less anxious, with impaired learning ability. In contrast, Mutyh(-/-) mice showed moderately improved memory. We observed no apparent change in genomic 8-oxoG levels, suggesting that Ogg1 and Mutyh play minor roles in global repair in adult brain. Notably, transcriptome analysis of hippocampus revealed that differentially expressed genes in the mutants belong to pathways known to be involved in anxiety and cognition. Esr1 targets were upregulated, suggesting a role of Ogg1 and Mutyh in repression of Esr1 signaling. Thus, beyond their involvement in DNA repair, Ogg1 and Mutyh regulate hippocampal gene expression related to cognition and behavior, suggesting a role for the glycosylases in regulating adaptive behavior.
Free Radical Biology and Medicine | 2014
Clara M.O. Jalland; Sylvie L. Benestad; Cecilie Ersdal; Katja Scheffler; Rajikala Suganthan; Yusaku Nakabeppu; Lars Eide; Magnar Bjørås; Michael A. Tranulis
The detailed mechanisms of prion-induced neurotoxicity are largely unknown. Here, we have studied the role of DNA damage caused by reactive oxygen species in a mouse scrapie model by characterizing prion disease in the ogg1(-/-)mutyh(-/-) double knockout, which is compromised in oxidative DNA base excision repair. Ogg1 initiates removal of the major oxidation product 8-oxoguanine (8-oxoG) in DNA, and Mutyh initiates removal of adenine that has been misincorporated opposite 8-oxoG. Our data show that the onset of clinical signs appeared unaffected by Mutyh and Ogg1 expression. However, the ogg1(-/-)mutyh(-/-) mice displayed a significantly shorter clinical phase of the disease. Thus, accumulation of oxidative DNA damage might be of particular importance in the terminal clinical phase of prion disease. The prion-induced pathology and lesion profile were similar between knockout mice and controls. The fragmentation pattern of protease-resistant PrP as revealed in Western blots was also identical between the groups. Our data show that the fundamentals of prion propagation and pathological manifestation are not influenced by the oxidative DNA damage repair mechanisms studied here, but that progressive accumulation of oxidative lesions may accelerate the final toxic phase of prion disease.
Scientific Reports | 2016
Tonje Skarpengland; Sverre Holm; Katja Scheffler; Ida Gregersen; Tuva B. Dahl; Rajikala Suganthan; Filip M. Segers; Ingunn Østlie; Jeroen J. T. Otten; Luisa Luna; Daniel F.J. Ketelhuth; Anna M. Lundberg; Christine Gran Neurauter; Gunn A. Hildrestrand; Mona Skjelland; Bodil Bjørndal; Asbjørn Svardal; Per Ole Iversen; Ulf Hedin; Ståle Nygård; Ole Kristoffer Olstad; Kirsten Krohg-Sørensen; Geir Slupphaug; Lars Eide; Anna Kuśnierczyk; Lasse Folkersen; Thor Ueland; Rolf K. Berge; Göran K. Hansson; Erik A.L. Biessen
Increasing evidence suggests that oxidative DNA damage accumulates in atherosclerosis. Recently, we showed that a genetic variant in the human DNA repair enzyme NEIL3 was associated with increased risk of myocardial infarction. Here, we explored the role of Neil3/NEIL3 in atherogenesis by both clinical and experimental approaches. Human carotid plaques revealed increased NEIL3 mRNA expression which significantly correlated with mRNA levels of the macrophage marker CD68. Apoe−/−Neil3−/− mice on high-fat diet showed accelerated plaque formation as compared to Apoe−/− mice, reflecting an atherogenic lipid profile, increased hepatic triglyceride levels and attenuated macrophage cholesterol efflux capacity. Apoe−/−Neil3−/− mice showed marked alterations in several pathways affecting hepatic lipid metabolism, but no genotypic alterations in genome integrity or genome-wide accumulation of oxidative DNA damage. These results suggest a novel role for the DNA glycosylase Neil3 in atherogenesis in balancing lipid metabolism and macrophage function, potentially independently of genome-wide canonical base excision repair of oxidative DNA damage.
Scientific Reports | 2017
Veslemøy Rolseth; Luisa Luna; Ann Karin Olsen; Rajikala Suganthan; Katja Scheffler; Christine Gran Neurauter; Ying Esbensen; Anna Kuśnierczyk; Gunn A. Hildrestrand; Anne Graupner; Jill Mari Andersen; Geir Slupphaug; Arne Klungland; Hilde Nilsen; Magnar Bjørås
Base excision repair (BER) is a major pathway for removal of DNA base lesions and maintenance of genomic stability, which is essential in cancer prevention. DNA glycosylases recognize and remove specific lesions in the first step of BER. The existence of a number of these enzymes with overlapping substrate specificities has been thought to be the reason why single knock-out models of individual DNA glycosylases are not cancer prone. In this work we have characterized DNA glycosylases NEIL1 and NEIL2 (Neil1−/−/Neil2−/−) double and NEIL1, NEIL2 and NEIL3 (Neil1−/−/Neil2−/−/Neil3−/−) triple knock-out mouse models. Unexpectedly, our results show that these mice are not prone to cancer and have no elevated mutation frequencies under normal physiological conditions. Moreover, telomere length is not affected and there was no accumulation of oxidative DNA damage compared to wild-type mice. These results strengthen the hypothesis that the NEIL enzymes are not simply back-up enzymes for each other but enzymes that have distinct functions beyond canonical repair.