Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rajiv D. Machado is active.

Publication


Featured researches published by Rajiv D. Machado.


Nature Genetics | 2000

Heterozygous germline mutations in BMPR2 , encoding a TGF-β receptor, cause familial primary pulmonary hypertension

Kirk B. Lane; Rajiv D. Machado; Michael W. Pauciulo; Jennifer R. Thomson; John A. Phillips; James E. Loyd; William C. Nichols; Richard C. Trembath

Primary pulmonary hypertension (PPH), characterized by obstruction of pre-capillary pulmonary arteries, leads to sustained elevation of pulmonary arterial pressure (mean >25 mm Hg at rest or >30 mm Hg during exercise). The aetiology is unknown, but the histological features reveal proliferation of endothelial and smooth muscle cells with vascular remodelling (Fig. 1). More than one affected relative has been identified in at least 6% of cases (familial PPH, MIM 178600). Familial PPH (FPPH) segregates as an autosomal dominant disorder with reduced penetrance and has been mapped to a locus designated PPH1 on 2q33, with no evidence of heterogeneity. We now show that FPPH is caused by mutations in BMPR2, encoding a TGF-β type II receptor (BMPR-II). Members of the TGF-β superfamily transduce signals by binding to heteromeric complexes of type I and II receptors, which activates serine/threonine kinases, leading to transcriptional regulation by phosphorylated Smads. By comparison with in vitro studies, identified defects of BMPR-II in FPPH are predicted to disrupt ligand binding, kinase activity and heteromeric dimer formation. Our data demonstrate the molecular basis of FPPH and underscore the importance in vivo of the TGF-β signalling pathway in the maintenance of blood vessel integrity.†These authors contributed equally to this work. *Micheala Aldred2, Christopher A. Brannon3, P. Michael Conneally4, Tatiana Foroud4, Neale Fretwell2, Radhika Gaddipati1, Daniel Koller4, Emily J. Loyd1, Neil Morgan2, John H. Newman1, Melissa A. Prince1, Carles Vilariño Güell2 &Lisa Wheeler1 1Vanderbilt University Medical Center, Nashville, Tennessee, USA. 2Division of Medical Genetics, Departments of Genetics and Medicine, University of Leicester, UK. 3Division of Human Genetics, Childrens Hospital Medical Center, Cincinnati, Ohio, USA. 4Indiana University School of Medicine, Indianapolis, Indiana, USA. Correspondence should be addressed to J.E.L. (e-mail: [email protected]), W.C.N. (e-mail: [email protected]) or R.C.T. (e-mail: [email protected]).


Journal of Medical Genetics | 2000

Sporadic primary pulmonary hypertension is associated with germline mutations of the gene encoding BMPR-II, a receptor member of the TGF-beta family

Jennifer R. Thomson; Rajiv D. Machado; Michael W. Pauciulo; Neil V. Morgan; Marc Humbert; Greg Elliott; Ken Ward; Magdi H. Yacoub; Ghada Mikhail; Paula Rogers; John H. Newman; Lisa Wheeler; Timothy Higenbottam; J. Simon R. Gibbs; Jim J. Egan; Agnes Crozier; Andrew Peacock; Robert Allcock; Paul Corris; James E. Loyd; Richard C. Trembath; William C. Nichols

BACKGROUND Primary pulmonary hypertension (PPH), resulting from occlusion of small pulmonary arteries, is a devastating condition. Mutations of the bone morphogenetic protein receptor type II gene (BMPR2), a component of the transforming growth factor beta (TGF-β) family which plays a key role in cell growth, have recently been identified as causing familial PPH. We have searched for BMPR2 gene mutations in sporadic PPH patients to determine whether the same genetic defect underlies the more common form of the disorder. METHODS We investigated 50 unrelated patients, with a clinical diagnosis of PPH and no identifiable family history of pulmonary hypertension, by direct sequencing of the entire coding region and intron/exon boundaries of the BMPR2 gene. DNA from available parent pairs (n=5) was used to assess the occurrence of spontaneous (de novo) mutations contributing to sporadic PPH. RESULTS We found a total of 11 different heterozygous germline mutations of theBMPR2 gene in 13 of the 50 PPH patients studied, including missense (n=3), nonsense (n=3), and frameshift (n=5) mutations each predicted to alter the cell signalling response to specific ligands. Parental analysis showed three occurrences of paternal transmission and two of de novo mutation of theBMPR2 gene in sporadic PPH. CONCLUSION The sporadic form of PPH is associated with germline mutations of the gene encoding the receptor protein BMPR-II in at least 26% of cases. A molecular classification of PPH, based upon the presence or absence ofBMPR2 mutations, has important implications for patient management and screening of relatives.


Circulation | 2002

Primary Pulmonary Hypertension Is Associated With Reduced Pulmonary Vascular Expression of Type II Bone Morphogenetic Protein Receptor

Carl Atkinson; Susan Stewart; Paul D. Upton; Rajiv D. Machado; Jennifer R. Thomson; Richard C. Trembath; Nicholas W. Morrell

Background—Mutations in the type II receptor for bone morphogenetic protein (BMPR-II), a receptor member of the transforming growth factor-&bgr; (TGF-&bgr;) superfamily, underlie many familial and sporadic cases of primary pulmonary hypertension (PPH). Methods and Results—Because the sites of expression of BMPR-II in the normal and hypertensive lung are unknown, we studied the cellular localization of BMPR-II and the related type I and II receptors for TGF-&bgr; by immunohistochemistry in lung sections from patients undergoing heart-lung transplantation for PPH (n=11, including 3 familial cases) or secondary pulmonary hypertension (n=6) and from unused donor lungs (n=4). In situ hybridization was performed for BMPR-II mRNA. Patients were screened for the presence of mutations in BMPR2. In normal lungs, BMPR-II expression was prominent on vascular endothelium, with minimal expression in airway and arterial smooth muscle. In pulmonary hypertension cases, the intensity of BMPR-II immunostaining varied between lesions but involved endothelial and myofibroblast components. Image analysis confirmed that expression of BMPR-II was markedly reduced in the peripheral lung of PPH patients, especially in those harboring heterozygous BMPR2 mutations. A less marked reduction was also observed in patients with secondary pulmonary hypertension. In contrast, there was no difference in level of staining for TGF-&bgr;RII or the endothelial marker CD31. Conclusions—The cellular localization of BMPR-II is consistent with a role in the formation of pulmonary vascular lesions in PPH, and reduced BMPR-II expression may contribute to the process of vascular obliteration in severe pulmonary hypertension.


American Journal of Human Genetics | 2001

BMPR2 Haploinsufficiency as the Inherited Molecular Mechanism for Primary Pulmonary Hypertension

Rajiv D. Machado; Michael W. Pauciulo; Jennifer R. Thomson; Kirk B. Lane; Neil V. Morgan; Lisa Wheeler; John A. Phillips; John H. Newman; Denise Williams; Nazzareno Galiè; Alessandra Manes; Keith McNeil; Magdi H. Yacoub; Ghada Mikhail; Paula Rogers; Paul Corris; Marc Humbert; Dian Donnai; Gunnar Mårtensson; Lisbeth Tranebjærg; James E. Loyd; Richard C. Trembath; William C. Nichols

Primary pulmonary hypertension (PPH) is a potentially lethal disorder, because the elevation of the pulmonary arterial pressure may result in right-heart failure. Histologically, the disorder is characterized by proliferation of pulmonary-artery smooth muscle and endothelial cells, by intimal hyperplasia, and by in situ thrombus formation. Heterozygous mutations within the bone morphogenetic protein type II receptor (BMPR-II) gene (BMPR2), of the transforming growth factor beta (TGF-beta) cell-signaling superfamily, have been identified in familial and sporadic cases of PPH. We report the molecular spectrum of BMPR2 mutations in 47 additional families with PPH and in three patients with sporadic PPH. Among the cohort of patients, we have identified 22 novel mutations, including 4 partial deletions, distributed throughout the BMPR2 gene. The majority (58%) of mutations are predicted to lead to a premature termination codon. We have also investigated the functional impact and genotype-phenotype relationships, to elucidate the mechanisms contributing to pathogenesis of this important vascular disease. In vitro expression analysis demonstrated loss of BMPR-II function for a number of the identified mutations. These data support the suggestion that haploinsufficiency represents the common molecular mechanism in PPH. Marked variability of the age at onset of disease was observed both within and between families. Taken together, these studies illustrate the considerable heterogeneity of BMPR2 mutations that cause PPH, and they strongly suggest that additional factors, genetic and/or environmental, may be required for the development of the clinical phenotype.


Journal of the American College of Cardiology | 2009

Genetics and genomics of pulmonary arterial hypertension.

Rajiv D. Machado; Oliver Eickelberg; C. Gregory Elliott; Mark W. Geraci; Masayuki Hanaoka; James E. Loyd; John H. Newman; John A. Phillips; Florent Soubrier; Richard C. Trembath; Wendy K. Chung

Pulmonary arterial hypertension (PAH) is a rare disorder that may be hereditable (HPAH), idiopathic (IPAH), or associated with either drug-toxin exposures or other medical conditions. Familial cases have long been recognized and are usually due to mutations in the bone morphogenetic protein receptor type 2 gene (BMPR2), or, much less commonly, 2 other members of the transforming growth factor-beta superfamily, activin-like kinase-type 1 (ALK1) and endoglin (ENG), which are associated with hereditary hemorrhagic telangiectasia. In addition, approximately 20% of patients with IPAH carry mutations in BMPR2. We provide a summary of BMPR2 mutations associated with HPAH, most of which are unique to each family and are presumed to result in loss of function. We review the finding of missense variants and variants of unknown significance in BMPR2 in IPAH/HPAH, fenfluramine exposure, and PAH associated with congenital heart disease. Clinical testing for BMPR2 mutations is available and may be offered to HPAH and IPAH patients but should be preceded by genetic counseling, since lifetime penetrance is only 10% to 20%, and there are currently no known effective preventative measures. Identification of a familial mutation can be valuable in reproductive planning and identifying family members who are not mutation carriers and thus will not require lifelong surveillance. With advances in genomic technology and with international collaborative efforts, genome-wide association studies will be conducted to identify additional genes for HPAH, genetic modifiers for BMPR2 penetrance and genetic susceptibility to IPAH. In addition, collaborative studies of BMPR2 mutation carriers should enable identification of environmental modifiers, biomarkers for disease development and progression, and surrogate markers for efficacy end points in clinical drug development, thereby providing an invaluable resource for trials of PAH prevention.


Circulation | 2010

Elevated Levels of Inflammatory Cytokines Predict Survival in Idiopathic and Familial Pulmonary Arterial Hypertension

Elaine Soon; Alan M. Holmes; Carmen Treacy; Natalie J. Doughty; Laura Southgate; Rajiv D. Machado; Richard C. Trembath; Simon Jennings; Lucy Barker; Paul Nicklin; Christoph Walker; David C. Budd; Joanna Pepke-Zaba; Nicholas W. Morrell

Background— Inflammation is a feature of pulmonary arterial hypertension (PAH), and increased circulating levels of cytokines are reported in patients with PAH. However, to date, no information exists on the significance of elevated cytokines or their potential as biomarkers. We sought to determine the levels of a range of cytokines in PAH and to examine their impact on survival and relationship to hemodynamic indexes. Methods and Results— We measured levels of serum cytokines (tumor necrosis factor-&agr;, interferon-&ggr; and interleukin-1&bgr;, -2, -4, -5, -6, -8, -10, -12p70, and -13) using ELISAs in idiopathic and heritable PAH patients (n=60). Concurrent clinical data included hemodynamics, 6-minute walk distance, and survival time from sampling to death or transplantation. Healthy volunteers served as control subjects (n=21). PAH patients had significantly higher levels of interleukin-1&bgr;, -2, -4, -6, -8, -10, and -12p70 and tumor necrosis factor-&agr; compared with healthy control subjects. Kaplan-Meier analysis showed that levels of interleukin-6, 8, 10, and 12p70 predicted survival in patients. For example, 5-year survival with interleukin-6 levels of >9 pg/mL was 30% compared with 63% for patients with levels ≤9 pg/mL (P=0.008). In this PAH cohort, cytokine levels were superior to traditional markers of prognosis such as 6-minute walk distance and hemodynamics. Conclusions— This study illustrates dysregulation of a broad range of inflammatory mediators in idiopathic and familial PAH and demonstrates that cytokine levels have a previously unrecognized impact on patient survival. They may prove to be useful biomarkers and provide insight into the contribution of inflammation in PAH.


Journal of Medical Genetics | 2003

Molecular and functional analysis identifies ALK-1 as the predominant cause of pulmonary hypertension related to hereditary haemorrhagic telangiectasia

R E Harrison; Julia A. Flanagan; Marja Sankelo; Salma A. Abdalla; J. Rowell; Rajiv D. Machado; Elliott Cg; Ivan M. Robbins; Horst Olschewski; Vallerie V. McLaughlin; Ekkehard Gruenig; F. Kermeen; Tarja Laitinen; Nicholas W. Morrell; Richard C. Trembath

Background: Mutations of the transforming growth factor β (TGFβ) receptor components ENDOGLIN and ALK-1 cause the autosomal dominant vascular disorder hereditary haemorrhagic telangiectasia (HHT). Heterozygous mutations of the type II receptor BMPR2 underlie familial primary pulmonary hypertension. Objective: To investigate kindreds presenting with both pulmonary hypertension and HHT. Methods: Probands and families were identified by specialist pulmonary hypertension centres in five countries. DNA sequence analysis of ALK-1, ENDOGLIN, and BMPR2 was undertaken. Cellular localisation was investigated by heterologous overexpression of mutant constructs in both BAEC and HeLa cells. The impact of a novel sequence variant was assessed through comparative analysis and computer modelling. Results: Molecular analysis of 11 probands identified eight missense mutations of ALK-1, one of which was observed in two families. Mutations were located within exons 5 to 10 of the ALK-1 gene. The majority of ALK-1 mutant constructs appeared to be retained within the cell cytoplasm, in the endoplasmic reticulum. A novel GS domain mutation, when overexpressed, reached the cell surface but is predicted to disrupt conformational changes owing to loss of a critical hydrogen bond. Two novel missense mutations were identified in ENDOGLIN. Conclusions: The association of pulmonary arterial hypertension and HHT identifies an important disease complication and appears most common among subjects with defects in ALK-1 receptor signalling. Future studies should focus on detailed molecular analysis of the common cellular pathways disrupted by mutations of ALK-1 and BMPR2 that cause inherited pulmonary vascular disease.


Circulation | 2009

Stress Doppler Echocardiography in Relatives of Patients With Idiopathic and Familial Pulmonary Arterial Hypertension Results of a Multicenter European Analysis of Pulmonary Artery Pressure Response to Exercise and Hypoxia

Sylvia Weissmann; Nicola Ehlken; Anna Fijałkowska; Christine Fischer; Thierry Fourme; Nazzareno Galiè; Ardeschir Ghofrani; Rachel Harrison; Sandrine Huez; Marc Humbert; Bart Janssen; Jarosław Kober; Rolf Koehler; Rajiv D. Machado; Derliz Mereles; Robert Naeije; Horst Olschewski; Steeve Provencher; Frank Reichenberger; Kathleen Retailleau; Guido Rocchi; Gérald Simonneau; Adam Torbicki; Richard C. Trembath; Werner Seeger

Background— This large, prospective, multicentric study was performed to analyze the distribution of tricuspid regurgitation velocity (TRV) values during exercise and hypoxia in relatives of patients with idiopathic and familial pulmonary arterial hypertension (PAH) and in healthy control subjects. We tested the hypothesis that relatives of idiopathic/familial PAH patients display an enhanced frequency of hypertensive TRV response to stress and that this response is associated with mutations in the bone morphogenetic protein receptor II (BMPR2) gene. Methods and Results— TRV was estimated by Doppler echocardiography during supine bicycle exercise in normoxia and during 120 minutes of normobaric hypoxia (Fio2=12%; ≈4500 m) in 291 relatives of 109 PAH patients and in 191 age-matched control subjects. Mean maximal TRVs were significantly higher in PAH relatives during both exercise and hypoxia. During exercise, 10% of control subjects but 31.6% of relatives (P<0.0001) exceeded the 90% quantile of mean maximal TRV seen in control subjects. Hypoxia revealed hypertensive TRV in 26% of relatives (P=0.0029). Among control subjects, TRV at rest was not related to age, sex, body mass index, systemic blood pressure, smoking status, or heart rate. Within kindreds identified as harboring deleterious mutations of the BMPR2 gene, a hypertensive TRV response occurred significantly more often compared with those without detected mutations. Conclusions— Pulmonary hypertensive response to exercise and hypoxia in idiopathic/familial PAH relatives appears as a genetic trait with familial clustering, being correlated to but not caused by a BMPR2 mutation. The suitability of this trait to predict manifest PAH development should be addressed in long-term follow-up studies.


Nature Genetics | 2006

Mutations in FRMD7, a newly identified member of the FERM family, cause X-linked idiopathic congenital nystagmus

Patrick Tarpey; Shery Thomas; N. Sarvananthan; Uma Mallya; Steven Lisgo; Christopher J. Talbot; Eryl O. Roberts; Musarat Awan; Mylvaganam Surendran; Rebecca J. McLean; Robert D. Reinecke; Andrea Langmann; Susanne Lindner; Martina Koch; Sunila Jain; Geoffrey Woodruff; Richard P. Gale; Chris Degg; Konstantinos Droutsas; Ioannis Asproudis; Alina A. Zubcov; Christina Pieh; Colin D. Veal; Rajiv D. Machado; Oliver C. Backhouse; Laura Baumber; Cris S. Constantinescu; Michael C. Brodsky; David G. Hunter; Richard W. Hertle

Idiopathic congenital nystagmus is characterized by involuntary, periodic, predominantly horizontal oscillations of both eyes. We identified 22 mutations in FRMD7 in 26 families with X-linked idiopathic congenital nystagmus. Screening of 42 singleton cases of idiopathic congenital nystagmus (28 male, 14 females) yielded three mutations (7%). We found restricted expression of FRMD7 in human embryonic brain and developing neural retina, suggesting a specific role in the control of eye movement and gaze stability.


Nature Medicine | 2015

Selective enhancement of endothelial BMPR-II with BMP9 reverses pulmonary arterial hypertension

Lu Long; Mark L. Ormiston; Xudong Yang; Mark Southwood; Stefan Gräf; Rajiv D. Machado; Matthias Mueller; Bernd Kinzel; Lai Ming Yung; Janine Mary Wilkinson; Stephen Moore; Kylie M. Drake; Micheala A. Aldred; Paul B. Yu; Paul D. Upton; Nicholas W. Morrell

Genetic evidence implicates the loss of bone morphogenetic protein type II receptor (BMPR-II) signaling in the endothelium as an initiating factor in pulmonary arterial hypertension (PAH). However, selective targeting of this signaling pathway using BMP ligands has not yet been explored as a therapeutic strategy. Here, we identify BMP9 as the preferred ligand for preventing apoptosis and enhancing monolayer integrity in both pulmonary arterial endothelial cells and blood outgrowth endothelial cells from subjects with PAH who bear mutations in the gene encoding BMPR-II, BMPR2. Mice bearing a heterozygous knock-in allele of a human BMPR2 mutation, R899X, which we generated as an animal model of PAH caused by BMPR-II deficiency, spontaneously developed PAH. Administration of BMP9 reversed established PAH in these mice, as well as in two other experimental PAH models, in which PAH develops in response to either monocrotaline or VEGF receptor inhibition combined with chronic hypoxia. These results demonstrate the promise of direct enhancement of endothelial BMP signaling as a new therapeutic strategy for PAH.

Collaboration


Dive into the Rajiv D. Machado's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marc Humbert

Université Paris-Saclay

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge