Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rajnikant Dixit is active.

Publication


Featured researches published by Rajnikant Dixit.


Parasites & Vectors | 2014

Salivary glands harbor more diverse microbial communities than gut in Anopheles culicifacies

Punita Sharma; Swati Sharma; Rakesh Kumar Maurya; Tanwee Das De; Tina Thomas; Suman Lata; Namita Singh; Kailash C. Pandey; Neena Valecha; Rajnikant Dixit

BackgroundIn recent years, it has been well documented that gut flora not only influence mosquito physiology, but also significantly alter vector competency. Although, salivary gland and gut constitute key partners of the digestive system, it is still believed that salivary glands may harbor less flora than gut (Parasit Vectors 6: 146, 2013).MethodsUsing a metagenomic approach, we have identified for the first time the diverse microbial community associated with these two physiologically different tissues of the digestive system in the mosquito Anopheles culicifacies.ResultsA total of 17 different phyla could be assigned to the whole metagenomic dataset, predominated by the phylum Proteobacteria, Firmicutes, Bacteriodetes, Tenericutes and Actinomycetes. Common bacteria included the members of Enhydrobacter, Agromonas, Serratia, Ralsonia, Lactobacillus, Pseudomonas, Streptococcus, Rubrobacter, Anaerococcus, Methylobacterium, Turicibacter, Elizabethkingia etc. in both the tissues representing ‘core microbiota’ of the mosquito digestive system. Salivary associated unique bacterial community included the members of Chloriflexi, Chlorobi, Cyanobacteria, Nitrospira, TM7, Armatimonadetes, Planctomycetes, Fibrobacteres etc.ConclusionWe find that the salivary gland microbial community structure is more diverse than gut of the mosquito, probably due to differential feeding associated engagements such as food acquisition, ingestion and digestion processes.


International Journal of Infectious Diseases | 2009

Salivary gland transcriptome analysis during Plasmodium infection in malaria vector Anopheles stephensi

Rajnikant Dixit; Arun Sharma; Devendra T. Mourya; Raghavendra Kamaraju; Millind S. Patole; Yogesh S. Shouche

BACKGROUND Understanding the tissue-specific molecular cross-talk mechanism during the mosquito-parasite interaction is of prime importance in the design of new strategies for malaria control. Because mosquito salivary glands are the final destination for the parasite maturation and transmission of vector-borne diseases, identification and characterization of salivary genes and their products are equally important in order to access their effect on the infectivity of the parasite. During the last five years there have been several studies on the sialomes of Anopheles mosquitoes, however very limited information is available on the changes in the salivary gland transcriptome in the presence of Plasmodium, and this information is limited to the mosquito Anopheles gambiae. METHODS In this study we aimed to explore and identify parasite-induced transcripts from the salivary glands of Anopheles stephensi, using a subtractive hybridization protocol. RESULTS Ninety-four percent of expressed sequence tags (ESTs) showed close homology to previously known families of mosquito salivary gland secretary proteins, representing the induced expression of alternative splicing and/or additional new members of the protein family. The remaining 6% of ESTs did not yield significant homology to any known proteins in the non-redundant database and thus may represent a class of unknown/novel salivary proteins. Primary analysis of the ESTs also revealed identification of several novel immune-related transcripts, including defensin and cecropins, probably involved in counter-activation of the antagonistic defense system. A comprehensive description of each family of proteins has been discussed in relation to the tissue-specific mosquito-parasite interaction. CONCLUSION This is the first report on the identification of new putative salivary genes, presumably activated during parasite infection.


Frontiers in Pharmacology | 2016

Cysteine Proteases: Modes of Activation and Future Prospects as Pharmacological Targets

Sonia Verma; Rajnikant Dixit; Kailash C. Pandey

Proteolytic enzymes are crucial for a variety of biological processes in organisms ranging from lower (virus, bacteria, and parasite) to the higher organisms (mammals). Proteases cleave proteins into smaller fragments by catalyzing peptide bonds hydrolysis. Proteases are classified according to their catalytic site, and distributed into four major classes: cysteine proteases, serine proteases, aspartic proteases, and metalloproteases. This review will cover only cysteine proteases, papain family enzymes which are involved in multiple functions such as extracellular matrix turnover, antigen presentation, processing events, digestion, immune invasion, hemoglobin hydrolysis, parasite invasion, parasite egress, and processing surface proteins. Therefore, they are promising drug targets for various diseases. For preventing unwanted digestion, cysteine proteases are synthesized as zymogens, and contain a prodomain (regulatory) and a mature domain (catalytic). The prodomain acts as an endogenous inhibitor of the mature enzyme. For activation of the mature enzyme, removal of the prodomain is necessary and achieved by different modes. The pro-mature domain interaction can be categorized as protein–protein interactions (PPIs) and may be targeted in a range of diseases. Cysteine protease inhibitors are available that can block the active site but no such inhibitor available yet that can be targeted to block the pro-mature domain interactions and prevent it activation. This review specifically highlights the modes of activation (processing) of papain family enzymes, which involve auto-activation, trans-activation and also clarifies the future aspects of targeting PPIs to prevent the activation of cysteine proteases.


PLOS ONE | 2011

Parasite killing in malaria non-vector mosquito Anopheles culicifacies species B: implication of nitric oxide synthase upregulation.

Sonam Vijay; Manmeet Rawat; Tridibes Adak; Rajnikant Dixit; Nutan Nanda; Harish C Srivastava; J. K. Sharma; Godavarthi B.K.S. Prasad; Arun Sharma

Background Anopheles culicifacies, the main vector of human malaria in rural India, is a complex of five sibling species. Despite being phylogenetically related, a naturally selected subgroup species B of this sibling species complex is found to be a poor vector of malaria. We have attempted to understand the differences between vector and non-vector Anopheles culicifacies mosquitoes in terms of transcriptionally activated nitric oxide synthase (AcNOS) physiologies to elucidate the mechanism of refractoriness. Identification of the differences between genes and gene products that may impart refractory phenotype can facilitate development of novel malaria transmission blocking strategies. Methodology/Principal Findings We conducted a study on phylogenetically related susceptible (species A) and refractory (species B) sibling species of An. culicifacies mosquitoes to characterize biochemical and molecular differences in AcNOS gene and gene elements and their ability to inhibit oocyst growth. We demonstrate that in species B, AcNOS specific activity and nitrite/nitrates in mid-guts and haemolymph were higher as compared to species A after invasion of the mid-gut by P. vivax at the beginning and during the course of blood feeding. Semiquantitative RT-PCR and real time PCR data of AcNOS concluded that this gene is more abundantly expressed in midgut of species B than in species A and is transcriptionally upregulated post blood meals. Dietary feeding of L-NAME along with blood meals significantly inhibited midgut AcNOS activity leading to an increase in oocyst production in An. culicifacies species B. Conclusions/Significance We hypothesize that upregulation of mosquito innate cytotoxicity due to NOS in refractory strain to Plasmodium vivax infection may contribute to natural refractoriness in An. culicifacies mosquito population. This innate capacity of refractory mosquitoes could represent the ancestral function of the mosquito immune system against the parasite and could be utilized to understand the molecular basis of refractoriness in planning effective vector control strategies.


Journal of Tropical Medicine | 2012

Structure-Function of Falcipains: Malarial Cysteine Proteases

Kailash C. Pandey; Rajnikant Dixit

Evidence indicates that cysteine proteases play essential role in malaria parasites; therefore an obvious area of investigation is the inhibition of these enzymes to treat malaria. Studies with cysteine protease inhibitors and manipulating cysteine proteases genes have suggested a role for cysteine proteases in hemoglobin hydrolysis. The best characterized Plasmodium cysteine proteases are falcipains, which are papain family enzymes. Falcipain-2 and falcipain-3 are major hemoglobinases of P. falciparum. Structural and functional analysis of falcipains showed that they have unique domains including a refolding domain and a hemoglobin binding domain. Overall, the complexes of falcipain-2 and falcipain-3 with small and macromolecular inhibitors provide structural insight to facilitate the design or modification of effective drug treatment against malaria. Drug development targeting falcipains should be aided by a strong foundation of biochemical and structural studies.


Acta Tropica | 2008

Molecular and phylogenetic analysis of a novel salivary defensin cDNA from malaria vector Anopheles stephensi

Rajnikant Dixit; Arun Sharma; Millind S. Patole; Yogesh S. Shouche

Manipulating the endogenous immune responses of the mosquito such as temporal and spatial expression of antimicrobial peptides may help in the development of a refractory mosquito, unable to transmit malaria. In mosquito several small antimicrobial peptides are activated locally in the midgut and salivary glands upon Plasmodium infection. Anopheles stephensi, the major urban malaria vector in India, has been considered as an important insect model to study vector-parasite interactions; however, so far no reports are available on the antimicrobial peptides from this mosquito species. In the present study, we report identification and molecular characterization of a novel cDNA encoding defensin like peptide, isolated from the salivary gland subtractive hybridization cDNA library of mosquito A. stephensi. Defensin cDNA is 396 base pair long, bearing an open reading frame of 96 amino acids. Deduced amino acid sequence of A. stephensi defensin (Astp_def) contains a signal peptide sequence of 24 amino acids followed by 32-amino acids long putative propeptide domain and a 40-amino acid mature peptide domain carrying 23-amino acid long consensuses sequence signature of insect defensin. Mature peptide of Astp_def carries six conserved cysteine residues, with a predicted molecular weight of 4.20kDa, and isoelectric point of 8.30, characteristic features of cationic defensins. Amino acid sequence similarity and phylogenetic analysis indicated a higher variation in the pre-propeptide region, as compared to the mature defensin peptide, assuring the presence of finely tuned immune responses to counter pathogens.


PLOS ONE | 2012

The Ionic and Hydrophobic Interactions Are Required for the Auto Activation of Cysteine Proteases of Plasmodium falciparum

Srinivasan Sundararaj; Deepak Singh; Ajay K. Saxena; Kapil Vashisht; Puran Singh Sijwali; Rajnikant Dixit; Kailash C. Pandey

The Plasmodium falciparum cysteine proteases falcipain-2 and falcipain-3 are major hemoglobinases and potential antimalarial drug targets. Our previous studies demonstrated that these enzymes are equipped with specific domains for specific functions. Structural and functional analysis of falcipains showed that they have unique domains including a refolding domain and a hemoglobin binding domain. As with many proteases, falcipain-2 and falcipain-3 are synthesized as inactive zymogens. However, it is not known how these enzymes get activated for hemoglobin hydrolysis. In this study, we are presenting the first evidence that salt bridges and hydrophobic interactions are required for the auto activation of cysteine proteases of P.falciparum. To investigate the mechanism of activation of these enzymes, we expressed the wild type protein as well as different mutants in E.coli. Refolding was assessed by circular dichroism. Both CD and trans activation data showed that the wild type enzymes and mutants are rich in secondary structures with similar folds. Our study revealed that prodomain-mature domain of falcipain-2 and falcipain-3 interacts via salt bridges and hydrophobic interactions. We mutated specific residues of falcipain-2 and falcipain-3, and evaluated their ability to undergo auto processing. Mutagenesis result showed that two salt bridges (Arg 185 - Glu 221, Glu 210 - Lys 403) in falcipain-2, and one salt bridge (Arg 202-Glu 238) in falcipain-3, play crucial roles in the activation of these enzymes. Further study revealed that hydrophobic interactions present both in falcipain-2 (Phe214, Trp449 Trp 453) and falcipain-3 (Phe 231 Trp 457 Trp 461) also play important roles in the activation of these enzymes. Our results revealed the interactions involved in auto processing of two major hemoglobinases of malaria parasite.


Journal of Insect Physiology | 2011

Salivary gland transcriptome analysis in response to sugar feeding in malaria vector Anopheles stephensi

Rajnikant Dixit; Manmeet Rawat; Sanjeev Kumar; Kailash C. Pandey; T. Adak; Arun Sharma

In this study, we analyzed a small scale transcriptome of salivary glands in sugar fed female mosquitoes. Thirty five percent of the transcripts could not be assigned a function. Some of them may code for salivary gland specific products involved in sugar feeding. We identified and characterized two new putative cDNAs encoding a sugar transporter and a cAMP generating DAPIT (Diabetes-Associated proteins in insulin sensitive tissues). Down regulation of these two cDNAs in response to blood feeding suggest that both AsST and AsDAPIT salivary genes may specifically be involved in the facilitation of sugar metabolism and energy production. The inability to absorb or digest sugar may cause organ failure, improper functioning of nervous system, behavioral disorder and death. Further functional characterization of theses putative transcripts is under investigation to examine their role in the mosquito salivary glands.


Infection, Genetics and Evolution | 2011

Sequence homology and structural analysis of plasmepsin 4 isolated from Indian Plasmodium vivax isolates

Manmeet Rawat; Sonam Vijay; Yash Gupta; Rajnikant Dixit; Praveen Tiwari; Arun Sharma

Plasmodium vivax malaria is a globally widespread disease responsible for 50% of human malaria cases in Central and South America, South East Asia and Indian subcontinent. The rising severity of the disease and emerging resistance of the parasite has emphasized the need for the search of novel therapeutic targets to combat P. vivax malaria. Plasmepsin 4 (PM4) a food vacuole aspartic protease is essential in parasite functions and viability such as initiating hemoglobin digestion and processing of proteins and is being looked upon as potential drug target. Although the plasmepsins of Plasmodium falciparum have been extensively studied, the plasmepsins of P. vivax are not well characterized. This is the first report detailing complete PM4 gene analysis from Indian P. vivax isolates. Blast results of sequences of P. vivax plasmepsin 4 (PvPM4) shows 100% homology among isolates of P. vivax collected from different geographical regions of India. All of the seven Indian isolates did not contain intron within the coding region. Interestingly, PvPM4 sequence analysis showed a very high degree of homology with all other sequences of Plasmodium species available in the genebank. Our results strongly suggest that PvPM4 are highly conserved except a small number of amino acid substitutions that did not modify key motifs at active site formation for the function or the structure of the enzymes. Furthermore, our study shows that PvPM4 occupies unique phylogenetic status within Plasmodium group and sufficiently differ from the most closely related human aspartic protease, cathepsin D. The analysis of 3D model of PM4 showed a typical aspartic protease structure with bi-lobed, compact and distinct peptide binding cleft in both P. vivax and P. falciparum. In order to validate appropriate use of PM4 as potential anti-malarial drug target, studies on genetic and structural variations among P. vivax plasmepsins (PvPMs) from different geographical regions are of utmost importance for drugs and vaccine designs for anti-malarial strategies.


Scientific Reports | 2017

Establishment and application of a novel isothermal amplification assay for rapid detection of chloroquine resistance (K76T) in Plasmodium falciparum

Madhvi Chahar; Neelima Mishra; Anup Anvikar; Rajnikant Dixit; Neena Valecha

Chloroquine (CQ) resistance in Plasmodium falciparum is determined by the mutations in the chloroquine resistance transporter (Pfcrt) gene. The point mutation at codon 76 (K76T), which has been observed in more than 91% of P. falciparum isolates in India, is the major determinant of CQ resistance. To overcome the limitations and challenges of traditional methods, in this investigation we developed an easy to use loop mediated isothermal amplification (LAMP) protocol for rapid detection of the K76T mutation associated with CQ resistance in P. falciparum with naked eye visualization. In- house designed primers were synthesized and optimized to specifically distinguish the CQ resistant mutants of P. falciparum. The LAMP reaction was optimal at 61 °C for 60 min and calcein dye was added prior to amplification to enable visual detection. We demonstrate the detection limit of <2 ng/μl respectively, supporting the high sensitivity of this calcein based LAMP method. To the best of our knowledge this is the first report on the establishment of an easy, reliable and cost effective LAMP assay for rapid and specific detection of highly CQ resistance in P. falciparum malaria.

Collaboration


Dive into the Rajnikant Dixit's collaboration.

Top Co-Authors

Avatar

Kailash C. Pandey

National Institute of Malaria Research

View shared research outputs
Top Co-Authors

Avatar

Tanwee Das De

National Institute of Malaria Research

View shared research outputs
Top Co-Authors

Avatar

Punita Sharma

National Institute of Malaria Research

View shared research outputs
Top Co-Authors

Avatar

Tina Thomas

National Institute of Malaria Research

View shared research outputs
Top Co-Authors

Avatar

Sonia Verma

National Institute of Malaria Research

View shared research outputs
Top Co-Authors

Avatar

Neena Valecha

National Institute of Malaria Research

View shared research outputs
Top Co-Authors

Avatar

Yasha Hasija

Delhi Technological University

View shared research outputs
Top Co-Authors

Avatar

Arun Sharma

National Institute of Malaria Research

View shared research outputs
Top Co-Authors

Avatar

Yogesh S. Shouche

Savitribai Phule Pune University

View shared research outputs
Top Co-Authors

Avatar

Charu Rawal

National Institute of Malaria Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge