Ralf Deichmann
University College London
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ralf Deichmann.
Neuron | 2002
John P. O'Doherty; Ralf Deichmann; Hugo D. Critchley; R. J. Dolan
The aim of this study was to determine the brain regions involved in anticipation of a primary taste reward and to compare these regions to those responding to the receipt of a taste reward. Using fMRI, we scanned human subjects who were presented with visual cues that signaled subsequent reinforcement with a pleasant sweet taste (1 M glucose), a moderately unpleasant salt taste (0.2 M saline), or a neutral taste. Expectation of a pleasant taste produced activation in dopaminergic midbrain, posterior dorsal amygdala, striatum, and orbitofrontal cortex (OFC). Apart from OFC, these regions were not activated by reward receipt. The findings indicate that when rewards are predictable, brain regions recruited during expectation are, in part, dissociable from areas responding to reward receipt.
Current Biology | 2006
Christian C. Ruff; Felix Blankenburg; Otto Bjoertomt; Sven Bestmann; Elliot Freeman; John-Dylan Haynes; Geraint Rees; Oliver Josephs; Ralf Deichmann; Jon Driver
BACKGROUNDnRegions in human frontal cortex may have modulatory top-down influences on retinotopic visual cortex, but to date neuroimaging methods have only been able to provide indirect evidence for such functional interactions between remote but interconnected brain regions. Here we combined transcranial magnetic stimulation (TMS) with concurrent functional magnetic resonance imaging (fMRI), plus psychophysics, to show that stimulation of the right human frontal eye-field (FEF) produced a characteristic topographic pattern of activity changes in retinotopic visual areas V1-V4, with functional consequences for visual perception.nnnRESULTSnFEF TMS led to activity increases for retinotopic representations of the peripheral visual field, but to activity decreases for the central field, in areas V1-V4. These frontal influences on visual cortex occurred in a top-down manner, independently of visual input. TMS of a control site (vertex) did not elicit such visual modulations, and saccades, blinks, or pupil dilation could not account for our results. Finally, the effects of FEF TMS on activity in retinotopic visual cortex led to a behavioral prediction that we confirmed psychophysically by showing that TMS of the frontal site (again compared with vertex) enhanced perceived contrast for peripheral relative to central visual stimuli.nnnCONCLUSIONSnOur results provide causal evidence that circuits originating in the human FEF can modulate activity in retinotopic visual cortex, in a manner that differentiates the central and peripheral visual field, with functional consequences for perception. More generally, our study illustrates how the new approach of concurrent TMS-fMRI can now reveal causal interactions between remote but interconnected areas of the human brain.
NeuroImage | 2004
Ralf Deichmann; Christian Schwarzbauer; Robert Turner
An algorithm for the optimisation of 3D Modified Driven Equilibrium Fourier Transform (MDEFT) sequences for T1-weighted anatomical brain imaging is presented. Imaging parameters are optimised for a clinical whole body scanner and a clinical head scanner operating at 1.5 and 3 T, respectively. In vivo studies show that the resulting sequences allow for the whole brain acquisition of anatomical scans with an isotropic resolution of 1 mm and high contrast-to-noise ratio (CNR) in an acceptable scan time of 12 min. Typical problems related to the scanner-specific hardware configurations are discussed in detail, especially the occurrence of flow artefacts in images acquired with head transmit coils and the enhancement of scalp intensities in images acquired with phased array receive coils. It is shown both theoretically and experimentally that these problems can be avoided by using spin tagging and fat saturation.
Nature | 2005
John-Dylan Haynes; Ralf Deichmann; Geraint Rees
When dissimilar images are presented to the two eyes, they compete for perceptual dominance so that each image is visible in turn for a few seconds while the other is suppressed. Such binocular rivalry is associated with relative suppression of local, eye-based representations that can also be modulated by high-level influences such as perceptual grouping. However, it is currently unclear how early in visual processing the suppression of eye-based signals can occur. Here we use high-resolution functional magnetic resonance imaging (fMRI) in conjunction with a new binocular rivalry stimulus to show that signals recorded from the human lateral geniculate nucleus (LGN) exhibit eye-specific suppression during rivalry. Regions of the LGN that show strong eye-preference independently show strongly reduced activity during binocular rivalry when the stimulus presented in their preferred eye is perceptually suppressed. The human LGN is thus the earliest stage of visual processing that reflects eye-specific dominance and suppression.
The Journal of Neuroscience | 2002
Jay A. Gottfried; Ralf Deichmann; Joel S. Winston; R. J. Dolan
Studies of patients with focal brain injury indicate that smell perception involves caudal orbitofrontal and medial temporal cortices, but a more precise functional organization has not been characterized. In addition, although it is believed that odors are potent triggers of emotion, support for an anatomical association is scant. We sought to define the neural substrates of human olfactory information processing and determine how these are modulated by affective properties of odors. We used event-related functional magnetic resonance imaging (fMRI) in an olfactory version of a classical conditioning paradigm, whereby neutral faces were paired with pleasant, neutral, or unpleasant odors, under 50% reinforcement. By comparing paired (odor/face) and unpaired (face only) conditions, odor-evoked neural activations could be isolated specifically. In primary olfactory (piriform) cortex, spatially and temporally dissociable responses were identified along a rostrocaudal axis. A nonhabituating response in posterior piriform cortex was tuned to all odors, whereas activity in anterior piriform cortex reflected sensitivity to odor affect. Bilateral amygdala activation was elicited by all odors, regardless of valence. In posterior orbitofrontal cortex, neural responses evoked by pleasant and unpleasant odors were segregated within medial and lateral segments, respectively. The results indicate functional heterogeneity in areas critical to human olfaction. They also show that brain regions mediating emotional processing are differentially activated by odor valence, providing evidence for a close anatomical coupling between olfactory and emotional processes.
Magnetic Resonance Materials in Physics Biology and Medicine | 2007
Nikolaus Weiskopf; Chloe Hutton; Oliver Josephs; Robert Turner; Ralf Deichmann
AbstractObject Most functional magnetic resonance imaging (fMRI) studies record the blood oxygen leveldependent (BOLD) signal using gradient-echo echo-planar imaging (GE EPI). EPI can suffer from substantial BOLD sensitivity loss caused by magnetic field inhomogeneities. Here, BOLD sensitivity losses due to susceptibility- induced gradients in the readout (RO) direction are characterized and a compensation approach is developed.n Materials and Methods Based on a theory describing the dropout mechanism, an EPI sequence was optimized for maximal BOLD sensitivity in the orbitofrontal cortex (OFC) using a specific combination of an increased spatial resolution in the RO direction and a reduced echo time. Using measured BOLD sensitivity maps and a breath hold experiment, the model and compensation approach were tested.n Results Using typical fMRI EPI parameters, susceptibility-induced gradients in the RO direction caused dropouts in the OFC and the inferior temporal lobe. Optimizing the echo time and spatial resolution effectively reduced the dropout as predicted by the theory.n Conclusion The model-based compensation approach effectively reduces BOLD sensitivity losses due to susceptibility-induced gradients in the RO direction. It retains the high temporal resolution of single-shot EPI and can be readily combined with methods for the compensation of susceptibility-induced field gradients in the phase-encoding and through-plane direction.
PLOS Biology | 2006
Felix Blankenburg; Christian C. Ruff; Ralf Deichmann; Geraint Rees; Jon Driver
We used functional magnetic resonance imaging (fMRI) to study neural correlates of a robust somatosensory illusion that can dissociate tactile perception from physical stimulation. Repeated rapid stimulation at the wrist, then near the elbow, can create the illusion of touches at intervening locations along the arm, as if a rabbit hopped along it. We examined brain activity in humans using fMRI, with improved spatial resolution, during this version of the classic cutaneous rabbit illusion. As compared with control stimulation at the same skin sites (but in a different order that did not induce the illusion), illusory sequences activated contralateral primary somatosensory cortex, at a somatotopic location corresponding to the filled-in illusory perception on the forearm. Moreover, the amplitude of this somatosensory activation was comparable to that for veridical stimulation including the intervening position on the arm. The illusion additionally activated areas of premotor and prefrontal cortex. These results provide direct evidence that illusory somatosensory percepts can affect primary somatosensory cortex in a manner that corresponds somatotopically to the illusory percept.
Nature Neuroscience | 2006
Sarah Thompson; Katharina von Kriegstein; Adenike Deane-Pratt; Torsten Marquardt; Ralf Deichmann; Timothy D. Griffiths; David McAlpine
Interaural time difference (ITD) is a critical cue to sound-source localization. Traditional models assume that sounds leading at one ear, and perceived on that side, are processed in the opposite midbrain. Using functional magnetic resonance imaging we demonstrate that as the ITDs of sounds increase, midbrain activity can switch sides, even though perceived location remains on the same side. The data require a new model for human ITD processing.
Magnetic Resonance in Medicine | 2005
David L. Thomas; Enrico De Vita; Ralf Deichmann; Robert Turner; Roger J. Ordidge
A modification to the 3D modified driven equilibrium Fourier transform (MDEFT) imaging technique is proposed that reduces its sensitivity to RF inhomogeneity. This is especially important at high field strengths where RF focusing effects exacerbate B1 inhomogeneity, causing significant signal nonuniformity in the images. The adiabatic inversion pulse used during the preparation period of the MDEFT sequence is replaced by a hard (nonadiabatic) pulse with a nominal flip angle of 130°. The spatial inhomogeneity of the hard pulse preparation compensates for the inhomogeneity of the excitation pulses. Uniform signal intensity is obtained for a wide range of B1 amplitudes and the high CNR characteristic of MDEFT is retained. The new approach was validated by numerical simulations and successfully applied to human brain imaging at 4.7 T, resulting in high‐quality T1‐weighted images of the whole human brain at high field strength with uniform signal intensity and contrast, despite the presence of significant RF inhomogeneity. Magn Reson Med 53:1452–1458, 2005.
Magnetic Resonance in Medicine | 2004
Jiun-Jie Wang; Ralf Deichmann; Robert Turner; Roger J. Ordidge
Diffusion tensor imaging (DTI) can provide vital insights into brain connectivity, and may become an important tool for the diagnosis and treatment of neurological disease. However, DTIs intrinsic low signal‐to‐noise ratio (SNR) and vulnerability to ghosting artifacts can result in poor image quality with low spatial resolution, which limits its clinical applications. In this study, a new double‐shot EPI sequence (half‐FOV EPI) with high spatial resolution was developed. This method enables DT measurements to be obtained with high isotropic spatial resolution and whole‐brain coverage. To avoid ghosting artifacts, the data are combined in image space rather than in k‐space. Magn Reson Med 51:853–857, 2004.