Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ralf J. Braun is active.

Publication


Featured researches published by Ralf J. Braun.


Journal of Biological Chemistry | 2006

Crucial mitochondrial impairment upon CDC48 mutation in apoptotic yeast

Ralf J. Braun; Hans Zischka; Frank Madeo; Tobias Eisenberg; Silke Wissing; Sabrina Büttner; Silvia Engelhardt; Dietmute Büringer; Marius Ueffing

Mutation in CDC48 (cdc48S565G), a gene essential in the endo-plasmic reticulum (ER)-associated protein degradation (ERAD) pathway, led to the discovery of apoptosis as a mechanism of cell death in the unicellular organism Saccharomyces cerevisiae. Elucidating Cdc48p-mediated apoptosis in yeast is of particular interest, because Cdc48p is the highly conserved yeast orthologue of human valosin-containing protein (VCP), a pathological effector for polyglutamine disorders and myopathies. Here we show distinct proteomic alterations in mitochondria in the cdc48S565G yeast strain. These observed molecular alterations can be related to functional impairment of these organelles as suggested by respiratory deficiency of cdc48S565G cells. Mitochondrial dysfunction in the cdc48S565G strain is accompanied by structural damage of mitochondria indicated by the accumulation of cytochrome c in the cytosol and mitochondrial enlargement. We demonstrate accumulation of reactive oxygen species produced predominantly by the cytochrome bc1 complex of the mitochondrial respiratory chain as suggested by the use of inhibitors of this complex. Concomitantly, emergence of caspase-like enzymatic activity occurs suggesting a role for caspases in the cell death process. These data strongly point for the first time to a mitochondrial involvement in Cdc48p/VCP-dependent apoptosis.


Molecular & Cellular Proteomics | 2006

Differential analysis of Saccharomyces cerevisiae mitochondria by free flow electrophoresis.

Hans Zischka; Ralf J. Braun; Enrico P. Marantidis; Dietmute Büringer; Carsten Bornhövd; Stefanie M. Hauck; Oliver Demmer; Christian Johannes Gloeckner; Andreas S. Reichert; Frank Madeo; Marius Ueffing

One major problem concerning the electrophoresis of mitochondria is the heterogeneity of mitochondrial appearance especially under pathological conditions. We show here the use of zone electrophoresis in a free flow electrophoresis device (ZE-FFE) as an analytical sensor to discriminate between different yeast mitochondrial populations. Impairment of the structural properties of the organelles by hyperosmotic stress resulted in broad separation profiles. Conversely untreated mitochondria gave rise to homogeneous populations reflected by sharp separation profiles. Yeast mitochondria with altered respiratory activity accompanied by a different outer membrane proteome composition could be discriminated based on electrophoretic deflection. Proteolysis of the mitochondrial surface proteome and the deletion of a single major protein species of the mitochondrial outer membrane altered the ZE-FFE deflection of these organelles. To demonstrate the usefulness of ZE-FFE for the analysis of mitochondria associated with pathological processes, we analyzed mitochondrial fractions from an apoptotic yeast strain. The cdc48S565G strain carries a mutation in the CDC48 gene that is an essential participant in the endoplasmic reticulum-associated protein degradation pathway. Mutant cells accumulate polyubiquitinated proteins in microsomal and mitochondrial extracts. Subsequent ZE-FFE characterization could distinguish a mitochondrial subfraction specifically enriched with polyubiquitinated proteins from the majority of non-affected mitochondria. This result demonstrates that ZE-FFE may give important information on the specific properties of subpopulations of a mitochondrial preparation allowing a further detailed functional analysis.


Journal of Biological Chemistry | 2011

Neurotoxic 43-kDa TAR DNA-binding Protein (TDP-43) Triggers Mitochondrion-dependent Programmed Cell Death in Yeast

Ralf J. Braun; Cornelia Sommer; Didac Carmona-Gutierrez; Chamel Khoury; Julia Ring; Sabrina Büttner; Frank Madeo

Pathological neuronal inclusions of the 43-kDa TAR DNA-binding protein (TDP-43) are implicated in dementia and motor neuron disorders; however, the molecular mechanisms of the underlying cell loss remain poorly understood. Here we used a yeast model to elucidate cell death mechanisms upon expression of human TDP-43. TDP-43-expressing cells displayed markedly increased markers of oxidative stress, apoptosis, and necrosis. Cytotoxicity was dose- and age-dependent and was potentiated upon expression of disease-associated variants. TDP-43 was localized in perimitochondrial aggregate-like foci, which correlated with cytotoxicity. Although the deleterious effects of TDP-43 were significantly decreased in cells lacking functional mitochondria, cell death depended neither on the mitochondrial cell death proteins apoptosis-inducing factor, endonuclease G, and cytochrome c nor on the activity of cell death proteases like the yeast caspase 1. In contrast, impairment of the respiratory chain attenuated the lethality upon TDP-43 expression with a stringent correlation between cytotoxicity and the degree of respiratory capacity or mitochondrial DNA stability. Consistently, an increase in the respiratory capacity of yeast resulted in enhanced TDP-43-triggered cytotoxicity, oxidative stress, and cell death markers. These data demonstrate that mitochondria and oxidative stress are important to TDP-43-triggered cell death in yeast and may suggest a similar role in human TDP-43 pathologies.


The EMBO Journal | 2013

Endonuclease G mediates α‐synuclein cytotoxicity during Parkinson's disease

Sabrina Büttner; Lukas Habernig; Filomena Broeskamp; Doris Ruli; F.-Nora Vögtle; Manolis Vlachos; Francesca Macchi; Victoria Küttner; Didac Carmona-Gutierrez; Tobias Eisenberg; Julia Ring; Maria Markaki; Asli Aras Taskin; Stefan Benke; Christoph Ruckenstuhl; Ralf J. Braun; Chris Van den Haute; Tine Bammens; Anke Van der Perren; Kai-Uwe Fröhlich; Joris Winderickx; Guido Kroemer; Veerle Baekelandt; Nektarios Tavernarakis; Gabor G. Kovacs; Jörn Dengjel; Chris Meisinger; Stephan J. Sigrist; Frank Madeo

Malfunctioning of the protein α‐synuclein is critically involved in the demise of dopaminergic neurons relevant to Parkinsons disease. Nonetheless, the precise mechanisms explaining this pathogenic neuronal cell death remain elusive. Endonuclease G (EndoG) is a mitochondrially localized nuclease that triggers DNA degradation and cell death upon translocation from mitochondria to the nucleus. Here, we show that EndoG displays cytotoxic nuclear localization in dopaminergic neurons of human Parkinson‐diseased patients, while EndoG depletion largely reduces α‐synuclein‐induced cell death in human neuroblastoma cells. Xenogenic expression of human α‐synuclein in yeast cells triggers mitochondria‐nuclear translocation of EndoG and EndoG‐mediated DNA degradation through a mechanism that requires a functional kynurenine pathway and the permeability transition pore. In nematodes and flies, EndoG is essential for the α‐synuclein‐driven degeneration of dopaminergic neurons. Moreover, the locomotion and survival of α‐synuclein‐expressing flies is compromised, but reinstalled by parallel depletion of EndoG. In sum, we unravel a phylogenetically conserved pathway that involves EndoG as a critical downstream executor of α‐synuclein cytotoxicity.


Trends in Biochemical Sciences | 2010

Nervous yeast: modeling neurotoxic cell death.

Ralf J. Braun; Sabrina Büttner; Julia Ring; Guido Kroemer; Frank Madeo

Neurodegeneration is characterized by the disease-specific loss of neuronal activity, culminating in the irreversible destruction of neurons. Neuronal cell death can proceed via distinct subroutines such as apoptosis and necrosis, but the underlying molecular mechanisms remain poorly understood. Saccharomyces cerevisiae is an established model for programmed cell death, characterized by distinct cell death pathways conserved from yeast to mammals. Recently, yeast models for several major classes of neurodegeneration, namely alpha-synucleinopathies, polyglutamine disorders, beta-amyloid diseases, tauopathies, and TDP-43 proteinopathies, have been established. Heterologous expression of the human proteins implicated in these disorders has unraveled important insights in their detrimental function, pointing to ways in which yeast might advance the mechanistic dissection of cell death pathways relevant for human neurodegeneration.


Biochemical Society Transactions | 2011

Mitochondrial dynamics in yeast cell death and aging

Ralf J. Braun; Benedikt Westermann

Mitochondria play crucial roles in programmed cell death and aging. Different stimuli activate distinct mitochondrion-dependent cell death pathways, and aging is associated with a progressive increase in mitochondrial damage, culminating in oxidative stress and cellular dysfunction. Mitochondria are highly dynamic organelles that constantly fuse and divide, forming either interconnected mitochondrial networks or separated fragmented mitochondria. These processes are believed to provide a mitochondrial quality control system and enable an effective adaptation of the mitochondrial compartment to the metabolic needs of the cell. The bakers yeast, Saccharomyces cerevisiae, is an established model for programmed cell death and aging research. The present review summarizes how mitochondrial morphology is altered on induction of cell death or on aging and how this correlates with the induction of different cell death pathways in yeast. We highlight the roles of the components of the mitochondrial fusion and fission machinery that affect and regulate cell death and aging.


Cell Reports | 2015

Accumulation of Basic Amino Acids at Mitochondria Dictates the Cytotoxicity of Aberrant Ubiquitin

Ralf J. Braun; Cornelia Sommer; Christine Leibiger; Romina J.G. Gentier; Verónica I. Dumit; Katrin Paduch; Tobias Eisenberg; Lukas Habernig; Gert Trausinger; Christoph Magnes; Thomas R. Pieber; Frank Sinner; Jörn Dengjel; Fred W. van Leeuwen; Guido Kroemer; Frank Madeo

Summary Neuronal accumulation of UBB+1, a frameshift variant of ubiquitin B, is a hallmark of Alzheimer’s disease (AD). How UBB+1 contributes to neuronal dysfunction remains elusive. Here, we show that in brain regions of AD patients with neurofibrillary tangles UBB+1 co-exists with VMS1, the mitochondrion-specific component of the ubiquitin-proteasome system (UPS). Expression of UBB+1 in yeast disturbs the UPS, leading to mitochondrial stress and apoptosis. Inhibiting UPS activity exacerbates while stimulating UPS by the transcription activator Rpn4 reduces UBB+1-triggered cytotoxicity. High levels of the Rpn4 target protein Cdc48 and its cofactor Vms1 are sufficient to relieve programmed cell death. We identified the UBB+1-induced enhancement of the basic amino acids arginine, ornithine, and lysine at mitochondria as a decisive toxic event, which can be reversed by Cdc48/Vms1-mediated proteolysis. The fact that AD-induced cellular dysfunctions can be avoided by UPS activity at mitochondria has potentially far-reaching pathophysiological implications.


Cell Cycle | 2011

Ceramide triggers metacaspase-independent mitochondrial cell death in yeast

Didac Carmona-Gutierrez; Angela Reisenbichler; Petra Heimbucher; Maria A. Bauer; Ralf J. Braun; Christoph Ruckenstuhl; Sabrina Büttner; Tobias Eisenberg; Patrick Rockenfeller; Kai-Uwe Fröhlich; Guido Kroemer; Frank Madeo

The activation of ceramide-generating enzymes, the blockade of ceramide degradation, or the addition of ceramide analogues can trigger apoptosis or necrosis in human cancer cells. Moreover, endogenous ceramide plays a decisive role in the killing of neoplastic cells by conventional anticancer chemotherapeutics. Here, we explored the possibility that membrane-permeable C2-ceramide might kill budding yeast (Saccharomyces cerevisiae) cells under fermentative conditions, where they exhibit rapid proliferation and a Warburg-like metabolism that is reminiscent of cancer cells. C2-ceramide efficiently induced the generation of reactive oxygen species (ROS), as well as apoptotic and necrotic cell death, and this effect was not influenced by deletion of the sole yeast metacaspase. However, C2-ceramide largely failed to cause ROS hypergeneration and cell death upon deletion of the mitochondrial genome. Thus, mitochondrial function is strictly required for C2-ceramide-induced yeast lethality. Accordingly, mitochondria from C2-ceramide-treated yeast cells exhibited major morphological alterations including organelle fragmentation and aggregation. Altogether, our results point to a pivotal role of mitochondria in ceramide-induced yeast cell death.


Frontiers in Oncology | 2012

Mitochondrion-mediated cell death: dissecting yeast apoptosis for a better understanding of neurodegeneration

Ralf J. Braun

Mitochondrial damage and dysfunction are common hallmarks for neurodegenerative disorders, including Alzheimer, Parkinson, Huntington diseases, and the motor neuron disorder amyotrophic lateral sclerosis. Damaged mitochondria pivotally contribute to neurotoxicity and neuronal cell death in these disorders, e.g., due to their inability to provide the high energy requirements for neurons, their generation of reactive oxygen species (ROS), and their induction of mitochondrion-mediated cell death pathways. Therefore, in-depth analyses of the underlying molecular pathways, including cellular mechanisms controlling the maintenance of mitochondrial function, is a prerequisite for a better understanding of neurodegenerative disorders. The yeast Saccharomyces cerevisiae is an established model for deciphering mitochondrial quality control mechanisms and the distinct mitochondrial roles during apoptosis and programmed cell death. Cell death upon expression of various human neurotoxic proteins has been characterized in yeast, revealing neurotoxic protein-specific differences. This review summarizes how mitochondria are affected in these neurotoxic yeast models, and how they are involved in the execution and prevention of cell death. I will discuss to which extent this mimics the situation in other neurotoxic model systems, and how this may contribute to a better understanding of the mitochondrial roles in the human disorders.


Microbial Cell | 2018

Guidelines and recommendations on yeast cell death nomenclature

Didac Carmona-Gutierrez; Maria A. Bauer; Andreas Zimmermann; Andrés Aguilera; Nicanor Pier Giorgio Austriaco; Kathryn R. Ayscough; Rena Balzan; Shoshana Bar-Nun; Antonio Barrientos; Peter Belenky; Marc Blondel; Ralf J. Braun; Michael Breitenbach; William C. Burhans; Sabrina Büttner; Duccio Cavalieri; Michael Chang; Katrina F. Cooper; Manuela Côrte-Real; Vitor Santos Costa; Christophe Cullin; Ian W. Dawes; Jörn Dengjel; Martin B. Dickman; Tobias Eisenberg; Birthe Fahrenkrog; Nicolas Fasel; Kai-Uwe Fröhlich; Ali Gargouri; Sergio Giannattasio

Elucidating the biology of yeast in its full complexity has major implications for science, medicine and industry. One of the most critical processes determining yeast life and physiology is cellular demise. However, the investigation of yeast cell death is a relatively young field, and a widely accepted set of concepts and terms is still missing. Here, we propose unified criteria for the definition of accidental, regulated, and programmed forms of cell death in yeast based on a series of morphological and biochemical criteria. Specifically, we provide consensus guidelines on the differential definition of terms including apoptosis, regulated necrosis, and autophagic cell death, as we refer to additional cell death routines that are relevant for the biology of (at least some species of) yeast. As this area of investigation advances rapidly, changes and extensions to this set of recommendations will be implemented in the years to come. Nonetheless, we strongly encourage the authors, reviewers and editors of scientific articles to adopt these collective standards in order to establish an accurate framework for yeast cell death research and, ultimately, to accelerate the progress of this vibrant field of research.

Collaboration


Dive into the Ralf J. Braun's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge