Ralf Jauch
Guangzhou Institutes of Biomedicine and Health
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ralf Jauch.
Proteins | 2007
Ralf Jauch; Hock Chuan Yeo; Prasanna R. Kolatkar; Neil D. Clarke
In CASP7, protein structure prediction targets that lacked substantial similarity to a protein in the PDB at the time of assessment were considered to be free modeling targets (FM). We assessed predictions for 14 FM targets as well as four other targets that were deemed to be on the borderline between FM targets and template based modeling targets (TBM/FM). GDT_TS was used as one measure of model quality. Model quality was also assessed by visual inspection. Visual inspection was performed by three independent assessors who were blinded to GDT_TS scores and other quantitative measures of model quality. The best models by visual inspection tended to rank among the top few percent by GDT_TS, but were typically not the highest scoring models. Thus, visual inspection remains an essential component of assessment for FM targets. Overall, group TS020 (Baker) performed best, but success on individual targets was widely distributed among many groups. Among these other groups, TS024 and TS025 (Zhang and Zhang server) performed notably well without exceptionally large computing resources. This should be considered encouraging for future CASPs. There was a sense of progress in template FM relative to CASP6, but we were unable to demonstrate this progress objectively. Proteins 2007.
The EMBO Journal | 2013
Irene Aksoy; Ralf Jauch; Jiaxuan Chen; Mateusz Dyla; Ushashree Divakar; Gireesh K. Bogu; Roy Teo; Calista Keow Leng Ng; Wishva Herath; Sun Lili; Andrew Paul Hutchins; Paul Robson; Prasanna R. Kolatkar; Lawrence W. Stanton
How regulatory information is encoded in the genome is poorly understood and poses a challenge when studying biological processes. We demonstrate here that genomic redistribution of Oct4 by alternative partnering with Sox2 and Sox17 is a fundamental regulatory event of endodermal specification. We show that Sox17 partners with Oct4 and binds to a unique ‘compressed’ Sox/Oct motif that earmarks endodermal genes. This is in contrast to the pluripotent state where Oct4 selectively partners with Sox2 at ‘canonical’ binding sites. The distinct selection of binding sites by alternative Sox/Oct partnering is underscored by our demonstration that rationally point‐mutated Sox17 partners with Oct4 on pluripotency genes earmarked by the canonical Sox/Oct motif. In an endodermal differentiation assay, we demonstrate that the compressed motif is required for proper expression of endodermal genes. Evidently, Oct4 drives alternative developmental programs by switching Sox partners that affects enhancer selection, leading to either an endodermal or pluripotent cell fate. This work provides insights in understanding cell fate transcriptional regulation by highlighting the direct link between the DNA sequence of an enhancer and a developmental outcome.
Cell Research | 2015
Lijun Wang; Yu Zhao; Xichen Bao; Xihua Zhu; Yvonne Ka Yin Kwok; Kun Sun; Xiaona Chen; Yongheng Huang; Ralf Jauch; Miguel A. Esteban; Hao Sun; Huating Wang
Emerging studies document the roles of long non-coding RNAs (LncRNAs) in regulating gene expression at chromatin level but relatively less is known how they regulate DNA methylation. Here we identify an lncRNA, Dum (developmental pluripotency-associated 2 (Dppa2) Upstream binding Muscle lncRNA) in skeletal myoblast cells. The expression of Dum is dynamically regulated during myogenesis in vitro and in vivo. It is also transcriptionally induced by MyoD binding upon myoblast differentiation. Functional analyses show that it promotes myoblast differentiation and damage-induced muscle regeneration. Mechanistically, Dum was found to silence its neighboring gene, Dppa2, in cis through recruiting Dnmt1, Dnmt3a and Dnmt3b. Furthermore, intrachromosomal looping between Dum locus and Dppa2 promoter is necessary for Dum/Dppa2 interaction. Collectively, we have identified a novel lncRNA that interacts with Dnmts to regulate myogenesis.
Nature Cell Biology | 2013
Daniel Esch; Juha Vahokoski; Matthew R. Groves; Vivian Pogenberg; Vlad Cojocaru; Hermann vom Bruch; Dong Han; Hannes C. A. Drexler; Marcos J. Araúzo-Bravo; Calista Keow Leng Ng; Ralf Jauch; Matthias Wilmanns; Hans R. Schöler
Terminally differentiated cells can be reprogrammed to pluripotency by the forced expression of Oct4, Sox2, Klf4 and c-Myc. However, it remains unknown how this leads to the multitude of epigenetic changes observed during the reprogramming process. Interestingly, Oct4 is the only factor that cannot be replaced by other members of the same family to induce pluripotency. To understand the unique role of Oct4 in reprogramming, we determined the structure of its POU domain bound to DNA. We show that the linker between the two DNA-binding domains is structured as an α-helix and exposed to the protein’s surface, in contrast to the unstructured linker of Oct1. Point mutations in this α-helix alter or abolish the reprogramming activity of Oct4, but do not affect its other fundamental properties. On the basis of mass spectrometry studies of the interactome of wild-type and mutant Oct4, we propose that the linker functions as a protein–protein interaction interface and plays a crucial role during reprogramming by recruiting key epigenetic players to Oct4 target genes. Thus, we provide molecular insights to explain how Oct4 contributes to the reprogramming process.
Journal of Molecular Biology | 2008
Ralf Jauch; Calista Keow Leng Ng; Kumar Singh Saikatendu; Raymond C. Stevens; Prasanna R. Kolatkar
The transcription factor Nanog is an upstream regulator in early mammalian development and a key determinant of pluripotency in embryonic stem cells. Nanog binds to promoter elements of hundreds of target genes and regulates their expression by an as yet unknown mechanism. Here, we report the crystal structure of the murine Nanog homeodomain (HD) and analysis of its interaction with a DNA element derived from the Tcf3 promoter. Two Nanog amino acid pairs, unique among HD sequences, appear to affect the mechanism of nonspecific DNA recognition as well as maintain the integrity of the structural scaffold. To assess selective DNA recognition by Nanog, we performed electrophoretic mobility shift assays using a panel of modified DNA binding sites and found that Nanog HD preferentially binds the TAAT(G/T)(G/T) motif. A series of rational mutagenesis experiments probing the role of six variant residues of Nanog on its DNA binding function establish their role in affecting binding affinity but not binding specificity. Together, the structural and functional evidence establish Nanog as a distant member of a Q50-type HD despite having considerable variation at the sequence level.
Stem Cells | 2011
Ralf Jauch; Irene Aksoy; Andrew Paul Hutchins; Calista Keow Leng Ng; Xian Feng Tian; Jiaxuan Chen; Paaventhan Palasingam; Paul Robson; Lawrence W. Stanton; Prasanna R. Kolatkar
Very few proteins are capable to induce pluripotent stem (iPS) cells and their biochemical uniqueness remains unexplained. For example, Sox2 cooperates with other transcription factors to generate iPS cells, but Sox17, despite binding to similar DNA sequences, cannot. Here, we show that Sox2 and Sox17 exhibit inverse heterodimerization preferences with Oct4 on the canonical versus a newly identified compressed sox/oct motif. We can swap the cooperativity profiles of Sox2 and Sox17 by exchanging single amino acids at the Oct4 interaction interface resulting in Sox2KE and Sox17EK proteins. The reengineered Sox17EK now promotes reprogramming of somatic cells to iPS, whereas Sox2KE has lost this potential. Consistently, when Sox2KE is overexpressed in embryonic stem cells it forces endoderm differentiation similar to wild‐type Sox17. Together, we demonstrate that strategic point mutations that facilitate Sox/Oct4 dimer formation on variant DNA motifs lead to a dramatic swap of the bioactivities of Sox2 and Sox17. STEM CELLS 2011;29:940–951
Physiological Genomics | 2010
Rory Johnson; Nadine Richter; Ralf Jauch; Philip M. Gaughwin; Chiara Zuccato; Lawrence W. Stanton
In the neurons of Huntingtons disease (HD) patients, gene regulatory networks are disrupted by aberrant nuclear localization of the master transcriptional repressor REST. Emerging evidence suggests that, in addition to protein-coding genes, noncoding RNAs (ncRNAs) may also contribute to neurodegenerative processes. To discover ncRNAs that are involved in HD, we screened genome-wide data for novel, noncoding targets of REST. This identified human accelerated region 1 (HAR1), a rapidly evolving cis-antisense locus that is specifically transcribed in the nervous system. We show that REST is targeted to the HAR1 locus by specific DNA regulatory motifs, resulting in potent transcriptional repression. Consistent with other REST target genes, HAR1 levels are significantly lower in the striatum of HD patients compared with unaffected individuals. These data represent further evidence that noncoding gene expression changes accompany neurodegeneration in Huntingtons disease.
The EMBO Journal | 2006
Ralf Jauch; Min-Kyu Cho; Stefan Jäkel; Catharina Netter; Kay Schreiter; Babette Aicher; Markus Zweckstetter; Herbert Jäckle; Markus C. Wahl
Autoinhibition is a recurring mode of protein kinase regulation and can be based on diverse molecular mechanisms. Here, we show by crystal structure analysis, nuclear magnetic resonance (NMR)‐based nucleotide affinity studies and rational mutagenesis that nonphosphorylated mitogen‐activated protein (MAP) kinases interacting kinase (Mnk) 1 is autoinhibited by conversion of the activation segment into an autoinhibitory module. In a Mnk1 crystal structure, the activation segment is repositioned via a Mnk‐specific sequence insertion at the N‐terminal lobe with the following consequences: (i) the peptide substrate binding site is deconstructed, (ii) the interlobal cleft is narrowed, (iii) an essential Lys–Glu pair is disrupted and (iv) the magnesium‐binding loop is locked into an ATP‐competitive conformation. Consistently, deletion of the Mnk‐specific insertion or removal of a conserved phenylalanine side chain, which induces a blockade of the ATP pocket, increase the ATP affinity of Mnk1. Structural rearrangements required for the activation of Mnks are apparent from the cocrystal structure of a Mnk2D228G–staurosporine complex and can be modeled on the basis of crystal packing interactions. Our data suggest a novel regulatory mechanism specific for the Mnk subfamily.
Journal of Molecular Biology | 2009
Paaventhan Palasingam; Ralf Jauch; Calista Keow Leng Ng; Prasanna R. Kolatkar
Sox17 regulates endodermal lineage commitment and is thought to function antagonistically to the pluripotency determinant Sox2. To investigate the biochemical basis for the distinct functions of Sox2 and Sox17, we solved the crystal structure of the high mobility group domain of Sox17 bound to a DNA element derived from the Lama1 enhancer using crystals diffracting to 2.7 A resolution. Sox17 targets the minor groove and bends the DNA by approximately 80 degrees . The DNA architecture closely resembles the one seen for Sox2/DNA structures, suggesting that the degree of bending is conserved between both proteins and nucleotide substitutions have only marginal effects on the bending topology. Accordingly, affinities of Sox2 and Sox17 for the Lama1 element were found to be identical. However, when the Oct1 contact interface of Sox2 is compared with the corresponding region of Sox17, a significantly altered charge distribution is observed, suggesting differential co-factor recruitment that may explain their biological distinctiveness.
Nucleic Acids Research | 2013
Andrew Paul Hutchins; Diego Diez; Yoshiko Takahashi; Shandar Ahmad; Ralf Jauch; Michel Lucien Tremblay; Diego Miranda-Saavedra
Transcription factors (TFs) regulate gene expression by binding to short DNA sequence motifs, yet their binding specificities alone cannot explain how certain TFs drive a diversity of biological processes. In order to investigate the factors that control the functions of the pleiotropic TF STAT3, we studied its genome-wide binding patterns in four different cell types: embryonic stem cells, CD4+ T cells, macrophages and AtT-20 cells. We describe for the first time two distinct modes of STAT3 binding. First, a small cell type-independent mode represented by a set of 35 evolutionarily conserved STAT3-binding sites that collectively regulate STAT3’s own functions and cell growth. We show that STAT3 is recruited to sites with E2F1 already pre-bound before STAT3 activation. Second, a series of different transcriptional regulatory modules (TRMs) assemble around STAT3 to drive distinct transcriptional programs in the four cell types. These modules recognize cell type-specific binding sites and are associated with factors particular to each cell type. Our study illustrates the versatility of STAT3 to regulate both universal- and cell type-specific functions by means of distinct TRMs, a mechanism that might be common to other pleiotropic TFs.