Ralf Preuss
University of Erlangen-Nuremberg
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ralf Preuss.
Cancer Epidemiology, Biomarkers & Prevention | 2006
Boleslaw Marczynski; Monika Raulf-Heimsoth; Ralf Preuss; Martin Kappler; Klaus Schott; Beate Pesch; Gerd Zoubek; Jens-Uwe Hahn; Thomas Mensing; Jürgen Angerer; Heiko U. Käfferlein; Thomas Brüning
We conducted a cross-shift study with 66 bitumen-exposed mastic asphalt workers and 49 construction workers without exposure to bitumen. Exposure was assessed using personal monitoring of airborne bitumen exposure, urinary 1-hydroxypyrene (1-OHP), and the sum of 1-, 2 + 9–,3-,4-hydroxyphenanthrene (OHPH). Genotoxic effects in WBC were determined with nonspecific DNA adduct levels of 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodGuo) and the formation of DNA strand breaks and alkali-labile sites. Concentration of fumes and aerosols of bitumen correlated significantly with the concentrations of 1-OHP and OHPH after shift (rs = 0.27; P = 0.03 and rs = 0.55; P < 0.0001, respectively). Bitumen-exposed workers had more DNA strand breaks than the reference group (P < 0.0001) at both time points and a significant correlation with 1-OHP and OHPH in the postshift urines (rs = 0.32; P = 0.001 and rs = 0.27; P = 0.004, respectively). Paradoxically, we measured higher levels of DNA strand breaks, although not significant, in both study groups before shift. 8-OxodGuo adduct levels did not correlate with DNA strand breaks. Further, 8-oxodGuo levels were associated neither with personal exposure to bitumen nor with urinary metabolite concentrations. Significantly more DNA adducts were observed after shift not only in bitumen-exposed workers but also in the reference group. Only low-exposed workers had significantly elevated 8-oxodGuo adduct levels before as well as after shift (P = 0.0002 and P = 0.02, respectively). Our results show that exposure to fumes and aerosols of bitumen may contribute to an increased DNA damage assessed with strand breaks. (Cancer Epidemiol Biomarkers Prev 2006;15(4):645–51)
International Journal of Hygiene and Environmental Health | 2004
Ralf Preuss; Holger M. Koch; Michael Wilhelm; Monika Pischetsrieder; Jürgen Angerer
Concentrations of 1- and 2-naphthol were measured in urine of 72 adults and 35 young children from Germany to assess the internal exposure to naphthalene of the general population. Naphthols could be detected in more than 90% of the urine samples. Levels of naphthols (sum of 1- and 2-naphthol) were 4-fold higher in smokers (median: 37.6 microg/g creatinine) compared to non-smoking adults (8.2 microg/g creatinine). On a creatinine basis young children had slightly lower naphthol levels in urine compared with adults (7.5 microg/g creatinine). Preliminary reference values for the sum of 1- and 2- naphthol in urine as means of the 95th percentile are proposed: 41.2 microg/g creatinine (non-smoking adults) and 23.5 microg/g creatinine (young children). It is concluded that 1- and 2-naphthol levels in urine are suitable for human biomonitoring of the naphthalene exposure in environmental medicine.
Cancer Epidemiology, Biomarkers & Prevention | 2007
Beate Pesch; Martin Kappler; Kurt Straif; Boleslaw Marczynski; Ralf Preuss; Rossbach B; Hans-Peter Rihs; Tobias Weiss; Sylvia Rabstein; Pierl C; Scherenberg M; Adams A; Heiko U. Käfferlein; Jürgen Angerer; Wilhelm M; Seidel A; Thomas Brüning
In regulatory toxicology, the dose-response relationship between occupational exposure and biomarkers is of importance in setting threshold values. We analyzed the relationships between occupational exposure to polycyclic aromatic hydrocarbons (PAH) and various biomarkers of internal exposure and DNA damage with data from 284 highly exposed male workers. Personal exposure to phenanthrene and other PAHs was measured during shift and correlated with the sum of 1−, 2+9−, 3−, and 4-hydroxyphenanthrenes in post-shift urine. PAHs and hydroxyphenanthrenes were associated with DNA damage assessed in WBC as 8-oxo-7,8-dihydro-2′-deoxyguanosine/106 dGuo and strand breaks by Comet assay as Olive tail moment. Hydroxyphenanthrenes correlated with phenanthrene (Spearman rs = 0.70; P < 0.0001). No correlations could be found between strand breaks and exposure (rs = 0.01, P < 0.0001 for PAHs; rs = −0.03, P = 0.68 for hydroxyphenanthrenes). Correlations with 8-oxo-7,8-dihydro-2′-deoxyguanosine/106 dGuo were weakly negative (rs = −0.22, P = 0.004 for PAHs) or flat (rs = −0.08, P = 0.31 for hydroxyphenanthrenes). Linear splines were applied to assess the relationships between the log-transformed variables. All regression models were adjusted for smoking and type of industry. For hydroxyphenanthrenes, 51.7% of the variance could be explained by phenanthrene and other predictors. Up to 0.77 μg/m3 phenanthrene, no association could be found with hydroxyphenanthrenes. Above that point, hydroxyphenanthrenes increased by a factor of 1.47 under a doubling of phenanthrene exposure (slope, 0.56; 95% confidence interval, 0.47-0.64). Hydroxyphenanthrenes may be recommended as biomarker of occupational PAH exposure, whereas biomarkers of DNA damage in blood did not show a dose-response relation to PAH exposure. (Cancer Epidemiol Biomarkers Prev 2007;16(9):1863–73)
Journal of Toxicology and Environmental Health | 2008
Monika Raulf-Heimsoth; Jürgen Angerer; Beate Pesch; Boleslaw Marczynski; Jens Uwe Hahn; Anne Spickenheuer; Ralf Preuss; Reinhold Rühl; Peter Rode; Thomas Brüning
In our research project entitled “Chemical irritative and/or genotoxic effect of fumes of bitumen under high processing temperatures on the airways,” 73 mastic asphalt workers exposed to fumes of bitumen and 49 construction nonexposed workers were analyzed and compared with respect to polycyclic aromatic hydrocarbons (PAHs) exposure and exposure-related health effects. In order to assess the internal exposure the monohydroxylated metabolites of pyrene, 1- hydroxypyrene (1-OHP), and phenanthrene, 1-, 2- and 9-, and 3- and 4-hydroxyphenanthrene (OHPH) were determined in pre- and post-shift urinary samples. Significantly higher concentrations 1-OHP and OHPH were detected in the post-shift urine samples of 7 mastic asphalt workers working on the same construction site compared to the reference workers and all other 66 mastic asphalt workers. The adjusted mean OHPH in the reference, 66 mastic worker, and 7 worker subgroups was 1022, 1544, and 12919 ng/g creatinine (crn) respectively, indicating a marked rise in the 7 worker subgroup. In addition, there was a more than 12-fold increase of PAH metabolites from pre- to post-shift in these 7 workers, whereas in the other mastic asphalt workers there was only a twofold rise in PAH-metabolite concentration between pre- and post-shift values. The analysis of a drilling core from the construction site of the seven workers led to the detection of the source for this marked PAH exposure during the working shift as being coal tar plates, which were, without knowledge of the workers and coordinators, the underground material of the mastic asphalt layer. The evaluation of the stationary workplace concentration showed enhanced levels of phenanthrene, pyrene, fluorene, anthracene, and acenaphthene during working shifts at the construction site of these seven workers. Our study shows that biological monitoring is also a useful tool for the detection of unrecognized sources with high PAH concentrations.
Archives of Toxicology | 2005
Holger M. Koch; Hermann M. Bolt; Ralf Preuss; Jürgen Angerer
International Journal of Andrology | 2006
Holger M. Koch; Ralf Preuss; Jürgen Angerer
International Archives of Occupational and Environmental Health | 2003
Ralf Preuss; Jürgen Angerer; Hans Drexler
Journal of Chromatography B | 2005
Ralf Preuss; Holger M. Koch; Jürgen Angerer
Journal of Chromatography B | 2004
Ralf Preuss; Jürgen Angerer
International Archives of Occupational and Environmental Health | 2005
Holger M. Koch; Ralf Preuss; Hans Drexler; Jürgen Angerer