Ralf Schmitt
Museum für Naturkunde
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ralf Schmitt.
Geology | 2015
Tanja Mohr-Westheide; Wolf Uwe Reimold; Jörg Fritz; Christian Koeberl; Tobias Salge; Axel Hofmann; Ralf Schmitt
In the Barberton greenstone belt (BGB) of South Africa, four distinct spherule horizons (S1–S4) with ages between ca. 3.5 and 3.2 Ga are among the oldest records of large asteroid impacts on Earth. Spherules in these layers are interpreted as molten impact ejecta, condensation products from impact plumes, or impact ejecta melted during atmospheric reentry. Past research has shown that some spherule layer samples from the BGB carry ultrahigh abundances of siderophile elements, including platinum group elements (PGEs), in some cases as much as four times the chondritic abundances. Inferences for very large projectile sizes responsible for these impact layers have been made on the strength of these data. Drilling by the International Continental Scientific Drilling Program has yielded 4 new spherule layer intersections in a 22-cm-long core segment. Scanning electron microscopy–energy dispersive X-ray spectrometry at high spatial resolution identified local areas of PGE enrichment with Ni-rich chromium spinel (Ni-Cr spinel) clusters. They are associated with PGE-rich metal alloy and sulfarsenide phases 600–1400 nm in size. The metal alloys are interpreted as primary objects that formed during the impact process. PGE sulfarsenides are the result of secondary alteration by S- and As-rich fluids. Thus, a micronugget effect caused by PGE phases and Ni-Cr spinel is responsible for the anomalously high extraterrestrial component in some spherule layer samples. This heterogeneous incorporation of meteoritic components due to primary heterogeneous fallout from the vapor plume must be taken into consideration in any attempt to estimate the global fallout of extraterrestrial components and, thus, to constrain projectile sizes.
Mineralogical Magazine | 2016
Stuart J. Mills; Andrew G. Christy; Ralf Schmitt
Abstract Two samples of hydrotalcite, probably worked on by Carl Christian Hochstetter, have been discovered in the Museum fur Naturkunde Berlin and given neotype status by the IMA CNMNC (proposal 15-J). The two samples from Snarum, Norway, have been reanalysed and give Mg5.84Al2.07Fe0.09(OH)16(CO3)1.08 · 4H2O and Mg5.75Al2.21Fe0.04(OH)16(CO3)1.12 · 4H2O. Both samples have a mix of the two polytypes 3R/2H in the ratio of 69.2/30.8 and 69.5/30.5%. A discussion of hydrotalcite and hydrotalcite-like phase occurrences in the literature is also presented.
Meteoritics & Planetary Science | 2000
Ralf Schmitt
Meteoritics & Planetary Science | 2006
Axel D. Wittmann; T. Kenkmann; Ralf Schmitt; Dieter Stoffler
Meteoritics & Planetary Science | 2004
Dieter Stoffler; Natalya A. Artemieva; Boris A. Ivanov; L. Hecht; T. Kenkmann; Ralf Schmitt; R. Tagle; Axel D. Wittmann
Meteoritics & Planetary Science | 2004
Ralf Schmitt; Axel D. Wittmann; Dieter Stoffler
Meteoritics & Planetary Science | 2004
Axel D. Wittmann; T. Kenkmann; Ralf Schmitt; L. Hecht; Dieter Stoffler
Meteoritics & Planetary Science | 2013
Astrid Kowitz; Ralf Schmitt; W. Uwe Reimold; U. Hornemann
Meteoritics & Planetary Science | 2004
R. Tagle; Jörg Erzinger; L. Hecht; Ralf Schmitt; Dieter Stoffler; Philippe Claeys
Meteoritics & Planetary Science | 2013
Ulli Raschke; Ralf Schmitt; W. Uwe Reimold