Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ralf Thiele is active.

Publication


Featured researches published by Ralf Thiele.


international conference on computer aided design | 1992

HERO: Hierarchical EMC-constrained routing

Dirk Theune; Ralf Thiele; Thomas Lengauer; Anja Feldmann

The authors point out that, in order to perform the design of printed circuit boards as time- and cost-efficiently as possible, electromagnetic compatability (EMC) phenomena have to be taken into account during layout synthesis. The EMC router HERO offers a robust framework for incorporating EMC constraints and cost criteria into routing. Using HERO, it will not be possible to obtain a completely failsafe layout, in general. However, experimental results for typical boards prove that a great number of EMC problems can be avoided during layout synthesis and that the effects of EMC phenomena can be reduced substantially. Detailed reports of EMC design rule violations provide effective input to the succeeding EMC verification phase. Violations of EMC design rules are mainly caused by an inappropriate placement. Therefore, it seems to be of great promise to combine hierarchical placement methods with this approach for hierarchical routing.<<ETX>>


Nature Genetics | 2015

Genomics and drug profiling of fatal TCF3-HLF-positive acute lymphoblastic leukemia identifies recurrent mutation patterns and therapeutic options

Ute Fischer; Michael Forster; Anna Rinaldi; Thomas Risch; Stephanie Sungalee; Hans-Jörg Warnatz; Beat C. Bornhauser; Michael Gombert; Christina Kratsch; Adrian M. Stütz; Marc Sultan; Joelle Tchinda; Catherine L Worth; Vyacheslav Amstislavskiy; Nandini Badarinarayan; André Baruchel; Thies Bartram; Giuseppe Basso; Cengiz Canpolat; Gunnar Cario; Hélène Cavé; Dardane Dakaj; Mauro Delorenzi; Maria Pamela Dobay; Cornelia Eckert; Eva Ellinghaus; Sabrina Eugster; Viktoras Frismantas; Sebastian Ginzel; Oskar A. Haas

TCF3-HLF−positive acute lymphoblastic leukemia (ALL) is currently incurable. Using an integrated approach, we uncovered distinct mutation, gene expression and drug response profiles in TCF3-HLF−positive and treatment-responsive TCF3-PBX1−positive ALL. We identified recurrent intragenic deletions of PAX5 or VPREB1 in constellation with the fusion of TCF3 and HLF. Moreover somatic mutations in the non-translocated allele of TCF3 and a reduction of PAX5 gene dosage in TCF3-HLF ALL suggest cooperation within a restricted genetic context. The enrichment for stem cell and myeloid features in the TCF3-HLF signature may reflect reprogramming by TCF3-HLF of a lymphoid-committed cell of origin toward a hybrid, drug-resistant hematopoietic state. Drug response profiling of matched patient-derived xenografts revealed a distinct profile for TCF3-HLF ALL with resistance to conventional chemotherapeutics but sensitivity to glucocorticoids, anthracyclines and agents in clinical development. Striking on-target sensitivity was achieved with the BCL2-specific inhibitor venetoclax (ABT-199). This integrated approach thus provides alternative treatment options for this deadly disease.


german conference on bioinformatics | 1998

New scoring schemes for protein fold recognition based on Voronoi contacts.

Ralf Zimmer; Marko Wöhler; Ralf Thiele

MOTIVATION The genome projects produce a wealth of protein sequences. Theoretical methods to predict possible structures and functions are needed for screening purposes, large-scale comparisons and in-depth analysis to identify worthwhile targets for further experimental research. Sequence-structure alignment is a basic tool for the identification of model folds for protein sequences and the construction of crude structural models. Empirical contact potentials (potentials of mean force) are used to optimize and evaluate such alignments. RESULTS We propose new scoring schemes based on a contact definition derived from Voronoi decompositions of the three-dimensional coordinates of protein structures. We demonstrate that Voronoi potentials are superior to pure distance-based contact potentials with respect to recognition rate and significance for native folds. Moreover, the scoring scheme has the potential to provide a reasonable balance of detail and ion such that it is also useful for the recognition of distantly related (both homologous and non-homologous) proteins. This is demonstrated here on a set of structural alignments showing much better correspondence of native and model scores for the Voronoi potentials as compared to conventional distance-based potentials. AVAILABILITY The potentials are made available via the program system ToPLign (URL: http://cartan.gmd.de/ToPLign.html). CONTACT Ralf.Zimmer,[email protected]


Cancer Discovery | 2015

Infection Exposure Is a Causal Factor in B-cell Precursor Acute Lymphoblastic Leukemia as a Result of Pax5-Inherited Susceptibility.

Alberto Martín-Lorenzo; Julia Hauer; Carolina Vicente-Dueñas; Franziska Auer; Inés González-Herrero; Idoia García-Ramírez; Sebastian Ginzel; Ralf Thiele; Stefan N. Constantinescu; Christoph Bartenhagen; Martin Dugas; Michael Gombert; Daniel Schäfer; Oscar Blanco; Andrea Mayado; Alberto Orfao; Diego Alonso-López; Javier De Las Rivas; Cesar Cobaleda; María Begoña García-Cenador; Francisco Javier García-Criado; Isidro Sánchez-García; Arndt Borkhardt

UNLABELLED Earlier in the past century, infections were regarded as the most likely cause of childhood B-cell precursor acute lymphoblastic leukemia (pB-ALL). However, there is a lack of relevant biologic evidence supporting this hypothesis. We present in vivo genetic evidence mechanistically connecting inherited susceptibility to pB-ALL and postnatal infections by showing that pB-ALL was initiated in Pax5 heterozygous mice only when they were exposed to common pathogens. Strikingly, these murine pB-ALLs closely resemble the human disease. Tumor exome sequencing revealed activating somatic, nonsynonymous mutations of Jak3 as a second hit. Transplantation experiments and deep sequencing suggest that inactivating mutations in Pax5 promote leukemogenesis by creating an aberrant progenitor compartment that is susceptible to malignant transformation through accumulation of secondary Jak3 mutations. Thus, treatment of Pax5(+/-) leukemic cells with specific JAK1/3 inhibitors resulted in increased apoptosis. These results uncover the causal role of infection in pB-ALL development. SIGNIFICANCE These results demonstrate that delayed infection exposure is a causal factor in pB-ALL. Therefore, these findings have critical implications for the understanding of the pathogenesis of leukemia and for the development of novel therapies for this disease.


Genes, Chromosomes and Cancer | 2013

Next-generation-sequencing-based risk stratification and identification of new genes involved in structural and sequence variations in near haploid lymphoblastic leukemia†‡

Cai Chen; Christoph Bartenhagen; Michael Gombert; Vera Okpanyi; Vera Binder; Silja Röttgers; Jutta Bradtke; Andrea Teigler-Schlegel; Jochen Harbott; Sebastian Ginzel; Ralf Thiele; Ute Fischer; Martin Dugas; Jianda Hu; Arndt Borkhardt

Near haploidy (23–29 chromosomes) is a numerical cytogenetic aberration in childhood acute lymphoblastic leukemia (ALL) associated with particularly poor outcome. In contrast, high hyperdiploidy (51–67 chromosomes) has a favorable prognosis. Correct classification and appropriate risk stratification of near haploidy is frequently hampered by the presence of apparently high hyperdiploid clones that arise by endoreduplication of the original near haploid clone. We evaluated next‐generation‐sequencing (NGS) to distinguish between “high hyperdiploid” leukemic clones of near haploid and true high hyperdiploid origin. Five high hyperdiploid ALL cases and the “high hyperdiploid” cell line MHH‐CALL‐2, derived from a near haploid clone, were tested for uniparental isodisomy. NGS showed that all disomic chromosomes of MHH‐CALL‐2, but none of the patients, were of uniparental origin, thus reliably discriminating these subtypes. Whole‐exome‐ and whole‐genome‐sequencing of MHH‐CALL‐2 revealed homozygous non‐synonymous coding mutations predicted to be deleterious for the protein function of 63 genes, among them known cancer‐associated genes, such as FANCA, NF1, TCF7L2, CARD11, EP400, histone demethylases, and transferases (KDM6B, KDM1A, PRDM11). Only eight of these were also, but heterozygously, mutated in the high hyperdiploid patients. Structural variations in MHH‐CALL‐2 include a homozygous deletion (MTAP/CDKN2A/CDKN2B/ANRIL), a homozygous inversion (NCKAP5), and an unbalanced translocation (FAM189A1). Together, the sequence variations provide MHH‐CALL‐2 with capabilities typically acquired during cancer development, e.g., loss of cell cycle control, enhanced proliferation, lack of DNA repair, cell death evasion, and disturbance of epigenetic gene regulation. Poorer prognosis of near haploid ALL most likely results from full penetrance of a large array of detrimental homozygous mutations.


Leukemia Research | 2015

Next-generation-sequencing of recurrent childhood high hyperdiploid acute lymphoblastic leukemia reveals mutations typically associated with high risk patients

Cai Chen; Christoph Bartenhagen; Michael Gombert; Vera Okpanyi; Vera Binder; Silja Röttgers; Jutta Bradtke; Andrea Teigler-Schlegel; Jochen Harbott; Sebastian Ginzel; Ralf Thiele; Peter Husemann; Pina Fanny Ida Krell; Arndt Borkhardt; Martin Dugas; Jianda Hu; Ute Fischer

20% of children suffering from high hyperdiploid acute lymphoblastic leukemia develop recurrent disease. The molecular mechanisms are largely unknown. Here, we analyzed the genetic landscape of five patients at relapse, who developed recurrent disease without prior high-risk indication using whole-exome- and whole-genome-sequencing. Oncogenic mutations of RAS pathway genes (NRAS, KRAS, FLT3, n=4) and deactivating mutations of major epigenetic regulators (CREBBP, EP300, each n=2 and ARID4B, EZH2, MACROD2, MLL2, each n=1) were prominent in these cases and virtually absent in non-recurrent cases (n=6) or other pediatric acute lymphoblastic leukemia cases (n=18). In relapse nucleotide variations were detected in cell fate determining transcription factors (GLIS1, AKNA). Structural genomic alterations affected genes regulating B-cell development (IKZF1, PBX1, RUNX1). Eleven novel translocations involved the genes ART4, C12orf60, MACROD2, TBL1XR1, LRRN4, KIAA1467, and ELMO1/MIR1200. Typically, patients harbored only single structural variations, except for one patient who displayed massive rearrangements in the context of a germline tumor suppressor TP53 mutation and a Li-Fraumeni syndrome-like family history. Another patient harbored a germline mutation in the DNA repair factor ATM. In summary, the relapse patients of our cohort were characterized by somatic mutations affecting the RAS pathway, epigenetic and developmental programs and germline mutations in DNA repair pathways.


Blood Cancer Journal | 2013

The impact of TEL-AML1 (ETV6-RUNX1) expression in precursor B cells and implications for leukaemia using three different genome-wide screening methods

Y Linka; Sebastian Ginzel; M Krüger; A Novosel; Michael Gombert; E Kremmer; Jochen Harbott; Ralf Thiele; Arndt Borkhardt; P. Landgraf

The reciprocal translocation t(12;21)(p13;q22), the most common structural genomic alteration in B-cell precursor acute lymphoblastic leukaemia in children, results in a chimeric transcription factor TEL-AML1 (ETV6-RUNX1). We identified directly and indirectly regulated target genes utilizing an inducible TEL-AML1 system derived from the murine pro B-cell line BA/F3 and a monoclonal antibody directed against TEL-AML1. By integration of promoter binding identified with chromatin immunoprecipitation (ChIP)-on-chip, gene expression and protein output through microarray technology and stable labelling of amino acids in cell culture, we identified 217 directly and 118 indirectly regulated targets of the TEL-AML1 fusion protein. Directly, but not indirectly, regulated promoters were enriched in AML1-binding sites. The majority of promoter regions were specific for the fusion protein and not bound by native AML1 or TEL. Comparison with gene expression profiles from TEL-AML1-positive patients identified 56 concordantly misregulated genes with negative effects on proliferation and cellular transport mechanisms and positive effects on cellular migration, and stress responses including immunological responses. In summary, this work for the first time gives a comprehensive insight into how TEL-AML1 expression may directly and indirectly contribute to alter cells to become prone for leukemic transformation.


german conference on bioinformatics | 1996

Fast Protein Fold Recognition and Accurate Sequence-Structure Alignment

Ralf Zimmer; Ralf Thiele

We present two approaches to the sequence-structure alignment or threading problem: given an amino acid sequence and a protein structure, find the best mapping of sequence residues to structure positions with respect to some scoring system. Methods to solve this problem have two main applications: first, the recognition or identification of a plausible fold for a protein sequence of unknown structure out of a database of representative protein structures and, second, the computation of accurate alignments by improving on sequence alignments using structural information in order to find a better starting point for homology based modeling.


IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems | 1994

Robust methods for EMC-driven routing

Dirk Theune; Ralf Thiele; Werner John; Thomas Lengauer

Due to the application of fast device technologies and the increasing complexity of printed-circuit boards, electromagnetic phenomena, e.g. reflections and crosstalk, gain more and more importance and may even disturb the function of a circuit. In the future, it will be indispensable to already consider phenomena of electromagnetic compatibility (EMC) during layout synthesis. In this paper, robust methods are presented that make it possible for the first time to incorporate complex EMC constraints and cost criteria into printed-circuit board routing. This includes both concepts for the development and specification of EMC design models and robust and efficient algorithms for EMC-driven routing that can handle these models. >


Journal of Integrative Bioinformatics | 2008

Graph-based sequence annotation using a data integration approach

Robert Pesch; Artem Lysenko; Matthew Hindle; Keywan Hassani-Pak; Ralf Thiele; Christopher J. Rawlings; Jacob Köhler; Jan Taubert

Summary The automated annotation of data from high throughput sequencing and genomics experiments is a significant challenge for bioinformatics. Most current approaches rely on sequential pipelines of gene finding and gene function prediction methods that annotate a gene with information from different reference data sources. Each function prediction method contributes evidence supporting a functional assignment. Such approaches generally ignore the links between the information in the reference datasets. These links, however, are valuable for assessing the plausibility of a function assignment and can be used to evaluate the confidence in a prediction. We are working towards a novel annotation system that uses the network of information supporting the function assignment to enrich the annotation process for use by expert curators and predicting the function of previously unannotated genes. In this paper we describe our success in the first stages of this development. We present the data integration steps that are needed to create the core database of integrated reference databases (UniProt, PFAM, PDB, GO and the pathway database Ara- Cyc) which has been established in the ONDEX data integration system. We also present a comparison between different methods for integration of GO terms as part of the function assignment pipeline and discuss the consequences of this analysis for improving the accuracy of gene function annotation. The methods and algorithms presented in this publication are an integral part of the ONDEX system which is freely available from http://ondex.sf.net/.

Collaboration


Dive into the Ralf Thiele's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Arndt Borkhardt

University of Düsseldorf

View shared research outputs
Top Co-Authors

Avatar

Michael Gombert

University of Düsseldorf

View shared research outputs
Top Co-Authors

Avatar

Ute Fischer

University of Düsseldorf

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cai Chen

University of Düsseldorf

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge