Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ralph E. Beitel is active.

Publication


Featured researches published by Ralph E. Beitel.


The Journal of Comparative Neurology | 1999

Functional Organization of Spectral Receptive Fields in the Primary Auditory Cortex of the Owl Monkey

Gregg H. Recanzone; Christoph E. Schreiner; Mitchell L. Sutter; Ralph E. Beitel; Michael M. Merzenich

Recent experiments in the cat have demonstrated that several response parameters, including frequency tuning, intensity tuning, and FM selectivity, are spatially segregated across the isofrequency axis. To investigate whether a similar functional organization exists in the primate, we have studied the spatial distribution of pure‐tone receptive field parameters across the primary auditory cortex (AI) in six owl monkeys (Aotus trivirgatus). The distributions of binaural interaction types and onset latency were also examined. Consistent with previous studies, the primary auditory cortex contained a clear cochleotopic organization. We demonstrate here that several other properties of the responses to tonal stimuli also showed nonrandom spatial distributions that were largely independent from each other. In particular, the sharpness of frequency tuning to pure tones, intensity tuning and sensitivity, response latency, and binaural interaction types all showed spatial variations that were independent from the representation of characteristic frequency and from each other. Statistical analysis confirmed that these organizations did not reflect random distributions. The overall organizational pattern of overlaying but independent functional maps that emerged was quite similar to that seen in AI of cats and, in general, appears to reflect a fundamental organization principle of primary sensory cortical fields. J. Comp. Neurol. 415:460–481, 1999.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Reward-dependent plasticity in the primary auditory cortex of adult monkeys trained to discriminate temporally modulated signals

Ralph E. Beitel; Christoph E. Schreiner; Steven W. Cheung; Xiaoqin Wang; Michael M. Merzenich

Adult owl monkeys were trained to detect an increase in the envelope frequency of a sinusoidally modulated 1-kHz tone. Detection was positively correlated with the magnitude of the change in the envelope frequency. Surprisingly, neuronal responses recorded in the primary auditory cortex of trained monkeys were globally suppressed by the modulated tone. However, the contrast in neuronal responsiveness to small increases versus large increases in envelope frequencies was actually enhanced in the trained animals. The results suggest behaviorally contingent inhibitory and excitatory processes that are modulated by the probability that a particular signal predicts a reward.


The Journal of Comparative Neurology | 2005

Functional Organization and Hemispheric Comparison of Primary Auditory Cortex in the Common Marmoset (Callithrix jacchus)

Bénédicte Philibert; Ralph E. Beitel; Srikantan S. Nagarajan; Ben H. Bonham; Christoph E. Schreiner; Steven W. Cheung

Hemispheric fine‐grain maps of primary auditory cortex (AI) were derived from microelectrode penetrations in the temporal gyrus of the common marmoset (Callithrix jacchus) to 1) compare the functional organization of AI in the marmoset with other mammalian species and 2) compare the right and left AI maps in individual monkeys. Frequency receptive fields (FRFs) were recorded with pure tones. Five FRF parameters were analyzed: characteristic frequency, threshold, sharpness of tuning 10 dB and 40 dB above threshold, and minimum response latency. The present study confirms that the functional organization of AI is characterized by a robust tonotopic frequency gradient overlaid with spatially clustered distributions of other FRF parameters. Globally, this functional organization of AI in the common marmoset is similar to that in other mammalian species. With respect to within‐subject hemispheric comparisons of the five FRF parameters, a coherent pattern of asymmetry is not evident in marmoset AI. The overall results indicate that the basic functional organization between hemispheres is similar but not identical. J. Comp. Neurol. 487:391–406, 2005.


Audiology and Neuro-otology | 2000

Behavioral and Neurophysiological Thresholds for Electrical Cochlear Stimulation in the Deaf Cat

Ralph E. Beitel; Maike Vollmer; Russell L. Snyder; Christoph E. Schreiner; Patricia A. Leake

Psychophysical detection thresholds for unmodulated electrical pulse trains or for sinusoidally amplitude-modulated (SAM) pulse trains were estimated in deaf juvenile cats using a conditioned avoidance paradigm. Biphasic current pulses (0.2 ms/phase) were delivered by scala tympani electrodes consisting of 4–8 electrode contacts driven as bipolar pairs. Electrical auditory brainstem response (EABR) thresholds were obtained periodically, and at the conclusion of behavioral training, response thresholds were obtained for neurons in the inferior colliculus (IC) and the primary auditory cortex (A1) in acute physiological experiments in the same animals. The results of the study include: (1) detection thresholds for unmodulated pulse trains and for SAM pulse trains were virtually identical; (2) EABR thresholds and behavioral thresholds were significantly correlated, although EABR thresholds consistently overestimated behavioral thresholds; (3) the lowest thresholds in the IC and the A1 were significantly correlated with behavioral thresholds, and (4) mean lowest thresholds in the IC and the A1 were essentially the same as the mean psychophysical detection threshold in the trained deaf cats.


Journal of Neurophysiology | 2011

Behavioral training restores temporal processing in auditory cortex of long-deaf cats

Maike Vollmer; Ralph E. Beitel

Temporal auditory processing is poor in prelingually hearing-impaired patients fitted with cochlear prostheses as adults. In an animal model of prelingual long-term deafness, we investigated the effects of behavioral training on temporal processing in the adult primary auditory cortex (AI). Neuronal responses to pulse trains of increasing frequencies were recorded in three groups of neonatally deafened cats that received a cochlear prosthesis after >3 yr of deafness: 1) acutely implanted animals that received no electric stimulation before study, 2) animals that received chronic-passive stimulation for several weeks to months before study, and 3) animals that received chronic-passive stimulation and additional behavioral training (signal detection). A fourth group of normal adult cats that was deafened acutely and implanted served as controls. The neuronal temporal response parameters of interest included the stimulus rate that evoked the maximum number of phase-locked spikes [best repetition rate (BRR)], the stimulus rate that produced 50% of the spike count at BRR (cutoff rate), the peak-response latency, and the first spike latency and timing-jitter. All long-deaf animals demonstrated a severe reduction in spiral ganglion cell density (mean, <6% of normal). Long-term deafness resulted in a significantly reduced temporal following capacity and spike-timing precision of cortical neurons in all parameters tested. Neurons in deaf animals that received only chronic-passive stimulation showed a gain in BRR but otherwise were similar to deaf cats that received no stimulation. In contrast, training with behaviorally relevant stimulation significantly enhanced all temporal processing parameters to normal levels with the exception of minimum latencies. These results demonstrate the high efficacy of learning-based remodeling of fundamental timing properties in cortical processing even in the adult, long-deaf auditory system, suggesting rehabilitative strategies for patients with long-term hearing loss.


Journal of Neurophysiology | 2011

Behavioral training enhances cortical temporal processing in neonatally deafened juvenile cats

Ralph E. Beitel; Maike Vollmer; Marcia W. Raggio; Christoph E. Schreiner

Deaf humans implanted with a cochlear prosthesis depend largely on temporal cues for speech recognition because spectral information processing is severely impaired. Training with a cochlear prosthesis is typically required before speech perception shows improvement, suggesting that relevant experience modifies temporal processing in the central auditory system. We tested this hypothesis in neonatally deafened cats by comparing temporal processing in the primary auditory cortex (AI) of cats that received only chronic passive intracochlear electric stimulation (ICES) with cats that were also trained with ICES to detect temporally challenging trains of electric pulses. After months of chronic passive stimulation and several weeks of detection training in behaviorally trained cats, multineuronal AI responses evoked by temporally modulated ICES were recorded in anesthetized animals. The stimulus repetition rates that produced the maximum number of phase-locked spikes (best repetition rate) and 50% cutoff rate were significantly higher in behaviorally trained cats than the corresponding rates in cats that received only chronic passive ICES. Behavioral training restored neuronal temporal following ability to levels comparable with those recorded in naïve prior normal-hearing adult deafened animals. Importantly, best repetitition rates and cutoff rates were highest for neuronal clusters activated by the electrode configuration used in behavioral training. These results suggest that neuroplasticity in the AI is induced by behavioral training and perceptual learning in animals deprived of ordinary auditory experience during development and indicate that behavioral training can ameliorate or restore temporal processing in the AI of profoundly deaf animals.


The Journal of Neuroscience | 2013

Spectral Context Affects Temporal Processing in Awake Auditory Cortex

Brian J. Malone; Ralph E. Beitel; Maike Vollmer; Marc A. Heiser; Christoph E. Schreiner

Amplitude modulation encoding is critical for human speech perception and complex sound processing in general. The modulation transfer function (MTF) is a staple of auditory psychophysics, and has been shown to predict speech intelligibility performance in a range of adverse listening conditions and hearing impairments, including cochlear implant-supported hearing. Although both tonal and broadband carriers have been used in psychophysical studies of modulation detection and discrimination, relatively little is known about differences in the cortical representation of such signals. We obtained MTFs in response to sinusoidal amplitude modulation (SAM) for both narrowband tonal carriers and two-octave bandwidth noise carriers in the auditory core of awake squirrel monkeys. MTFs spanning modulation frequencies from 4 to 512 Hz were obtained using 16 channel linear recording arrays sampling across all cortical laminae. Carrier frequency for tonal SAM and center frequency for noise SAM was set at the estimated BF for each penetration. Changes in carrier type affected both rate and temporal MTFs in many neurons. Using spike discrimination techniques, we found that discrimination of modulation frequency was significantly better for tonal SAM than for noise SAM, though the differences were modest at the population level. Moreover, spike trains elicited by tonal and noise SAM could be readily discriminated in most cases. Collectively, our results reveal remarkable sensitivity to the spectral content of modulated signals, and indicate substantial interdependence between temporal and spectral processing in neurons of the core auditory cortex.


The Journal of Neuroscience | 2015

Modulation-Frequency-Specific Adaptation in Awake Auditory Cortex

Brian J. Malone; Ralph E. Beitel; Maike Vollmer; Marc A. Heiser; Christoph E. Schreiner

Amplitude modulations are fundamental features of natural signals, including human speech and nonhuman primate vocalizations. Because natural signals frequently occur in the context of other competing signals, we used a forward-masking paradigm to investigate how the modulation context of a prior signal affects cortical responses to subsequent modulated sounds. Psychophysical “modulation masking,” in which the presentation of a modulated “masker” signal elevates the threshold for detecting the modulation of a subsequent stimulus, has been interpreted as evidence of a central modulation filterbank and modeled accordingly. Whether cortical modulation tuning is compatible with such models remains unknown. By recording responses to pairs of sinusoidally amplitude modulated (SAM) tones in the auditory cortex of awake squirrel monkeys, we show that the prior presentation of the SAM masker elicited persistent and tuned suppression of the firing rate to subsequent SAM signals. Population averages of these effects are compatible with adaptation in broadly tuned modulation channels. In contrast, modulation context had little effect on the synchrony of the cortical representation of the second SAM stimuli and the tuning of such effects did not match that observed for firing rate. Our results suggest that, although the temporal representation of modulated signals is more robust to changes in stimulus context than representations based on average firing rate, this representation is not fully exploited and psychophysical modulation masking more closely mirrors physiological rate suppression and that rate tuning for a given stimulus feature in a given neurons signal pathway appears sufficient to engender context-sensitive cortical adaptation.


Journal of Neurophysiology | 2017

Background noise exerts diverse effects on the cortical encoding of foreground sounds

Brian J. Malone; Marc A. Heiser; Ralph E. Beitel; Christoph E. Schreiner

In natural listening conditions, many sounds must be detected and identified in the context of competing sound sources, which function as background noise. Traditionally, noise is thought to degrade the cortical representation of sounds by suppressing responses and increasing response variability. However, recent studies of neural network models and brain slices have shown that background synaptic noise can improve the detection of signals. Because acoustic noise affects the synaptic background activity of cortical networks, it may improve the cortical responses to signals. We used spike train decoding techniques to determine the functional effects of a continuous white noise background on the responses of clusters of neurons in auditory cortex to foreground signals, specifically frequency-modulated sweeps (FMs) of different velocities, directions, and amplitudes. Whereas the addition of noise progressively suppressed the FM responses of some cortical sites in the core fields with decreasing signal-to-noise ratios (SNRs), the stimulus representation remained robust or was even significantly enhanced at specific SNRs in many others. Even though the background noise level was typically not explicitly encoded in cortical responses, significant information about noise context could be decoded from cortical responses on the basis of how the neural representation of the foreground sweeps was affected. These findings demonstrate significant diversity in signal in noise processing even within the core auditory fields that could support noise-robust hearing across a wide range of listening conditions.NEW & NOTEWORTHY The ability to detect and discriminate sounds in background noise is critical for our ability to communicate. The neural basis of robust perceptual performance in noise is not well understood. We identified neuronal populations in core auditory cortex of squirrel monkeys that differ in how they process foreground signals in background noise and that may contribute to robust signal representation and discrimination in acoustic environments with prominent background noise.


Journal of Neurophysiology | 2002

Representation of Spectral and Temporal Envelope of Twitter Vocalizations in Common Marmoset Primary Auditory Cortex

Srikantan S. Nagarajan; Steven W. Cheung; Purvis Bedenbaugh; Ralph E. Beitel; Christoph E. Schreiner; Michael M. Merzenich

Collaboration


Dive into the Ralph E. Beitel's collaboration.

Top Co-Authors

Avatar

Maike Vollmer

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marc A. Heiser

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge