Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ralph E. Hudson is active.

Publication


Featured researches published by Ralph E. Hudson.


IEEE Signal Processing Magazine | 2002

Source localization and beamforming

Joe C. Chen; Kung Yao; Ralph E. Hudson

Distributed sensor networks have been proposed for a wide range of applications. The main purpose of a sensor network is to monitor an area, including detecting, identifying, localizing, and tracking one or more objects of interest. These networks may be used by the military in surveillance, reconnaissance, and combat scenarios or around the perimeter of a manufacturing plant for intrusion detection. In other applications such as hearing aids and multimedia, microphone networks are capable of enhancing audio signals under noisy conditions for improved intelligibility, recognition, and cuing for camera aiming. Previous developments in integrated circuit technology have allowed the construction of low-cost miniature sensor nodes with signal processing and wireless communication capabilities. These technological advances not only open up many possibilities but also introduce challenging issues for the collaborative processing of wideband acoustic and seismic signals for source localization and beamforming in an energy-constrained distributed sensor network. The purpose of this article is to provide an overview of these issues.


IEEE Transactions on Signal Processing | 2002

Maximum-likelihood source localization and unknown sensor location estimation for wideband signals in the near-field

Joe C. Chen; Ralph E. Hudson; Kung Yao

In this paper, we derive the maximum-likelihood (ML) location estimator for wideband sources in the near field of the sensor array. The ML estimator is optimized in a single step, as opposed to other estimators that are optimized separately in relative time-delay and source location estimations. For the multisource case, we propose and demonstrate an efficient alternating projection procedure based on sequential iterative search on single-source parameters. The proposed algorithm is shown to yield superior performance over other suboptimal techniques, including the wideband MUSIC and the two-step least-squares methods, and is efficient with respect to the derived Cramer-Rao bound (CRB). From the CRB analysis, we find that better source location estimates can be obtained for high-frequency signals than low-frequency signals. In addition, large range estimation error results when the source signal is unknown, but such unknown parameter does not have much impact on angle estimation. In some applications, the locations of some sensors may be unknown and must be estimated. The proposed method is extended to estimate the range from a source to an unknown sensor location. After a number of source-location frames, the location of the uncalibrated sensor can be determined based on a least-squares unknown sensor location estimator.


IEEE Journal on Selected Areas in Communications | 1998

Blind beamforming on a randomly distributed sensor array system

Kung Yao; Ralph E. Hudson; Chris W. Reed; Da-Ching Chen; Flavio Lorenzelli

We consider a digital signal processing sensor array system, based on randomly distributed sensor nodes, for surveillance and source localization applications. In most array processing the sensor array geometry is fixed and known and the steering array vector/manifold information is used in beamformation. In this system, array calibration may be impractical due to unknown placement and orientation of the sensors with unknown frequency/spatial responses. This paper proposes a blind beamforming technique, using only the measured sensor data, to form either a sample data or a sample correlation matrix. The maximum power collection criterion is used to obtain array weights from the dominant eigenvector associated with the largest eigenvalue of a matrix eigenvalue problem. Theoretical justification of this approach uses a generalization of Szegos (1958) theory of the asymptotic distribution of eigenvalues of the Toeplitz form. An efficient blind beamforming time delay estimate of the dominant source is proposed. Source localization based on a least squares (LS) method for time delay estimation is also given. Results based on analysis, simulation, and measured acoustical sensor data show the effectiveness of this beamforming technique for signal enhancement and space-time filtering.


Proceedings of the IEEE | 2003

Coherent acoustic array processing and localization on wireless sensor networks

Joe C. Chen; Len Yip; Jeremy Elson; Hanbiao Wang; Daniela Maniezzo; Ralph E. Hudson; Kung Yao; Deborah Estrin

Advances in microelectronics, array processing, and wireless networking have motivated the analysis and design of low-cost integrated sensing, computing, and communicating nodes capable of performing various demanding collaborative space–time processing tasks. In this paper, we consider the problem of coherent acoustic sensor array processing and localization on distributed wireless sensor networks. We first introduce some basic concepts of beamforming and localization for wide-band acoustic sources. A review of various known localization algorithms based on time-delay followed by least-squares estimations as well as the maximum–likelihood method is given. Issues related to practical implementation of coherent array processing, including the need for fine-grain time synchronization, are discussed. Then we describe the implementation of a Linux-based wireless networked acoustic sensor array testbed, utilizing commercially available iPAQs with built-in microphones, codecs, and microprocessors, plus wireless Ethernet cards, to perform acoustic source localization. Various field-measured results using two localization algorithms show the effectiveness of the proposed testbed. An extensive list of references related to this work is also included.


international workshop on signal processing advances in wireless communications | 2001

Channel estimation and adaptive power allocation for performance and capacity improvement of multiple-antenna OFDM systems

Tai-Lai Tung; Kung Yao; Ralph E. Hudson

We describe several techniques for the analysis and design of OFDM multiple-antenna systems, which include channel estimation and tracking, optimal training sequences for initial channel acquisition, and adaptive power allocation with closed-loop updating of channel state information for capacity improvement.


international conference on acoustics speech and signal processing | 1999

Direct joint source localization and propagation speed estimation

Chris W. Reed; Ralph E. Hudson; Kung Yao

This paper describes two new techniques for the joint estimation of source location and propagation speed using measured time difference of arrival (TDOA) for a sensor array. Previous methods for source location either assumed the array consisted of widely separated subarrays, or used an iterative procedure that required a good initial estimate. The first method directly estimates the source location and propagation speed by converting the solution of a system of nonlinear equations to an overdetermined system of linear equations with two supplemental variables. The second method provides improved estimates by using the solution of the first method as the initial condition for further iteration. The Cramer-Rao Bound (CRB) on the joint estimation is derived, and simulations show the new methods compare favorably to the bound.


IEEE Transactions on Mobile Computing | 2004

Collaborative sensor networking towards real-time acoustical beamforming in free-space and limited reverberance

Pierpaolo Bergamo; Shadnaz Asgari; Hanbiao Wang; Daniela Maniezzo; Len Yip; Ralph E. Hudson; Kung Yao; Deborah Estrin

Wireless sensor networks have been attracting increasing research interest given the recent advances in microelectronics, array processing, and wireless networking. Consisting of a large collection of small, wireless, low-cost, integrated sensing, computing and communicating nodes capable of performing various demanding collaborative space-time processing tasks, wireless sensor network technology poses various unique design challenges, particularly for real-time operation. We review the approximate maximum-likelihood (AML) method for source localization and direction-of-arrival (DOA) estimation. Then, we consider the use of least-squares method (LS) method applied to DOA bearing crossings to perform source localization. A novel virtual array model applicable to the AML-DOA estimation method is proposed for reverberant scenarios. Details on the wireless acoustical testbed are given. We consider the use of Compaq iPAQ 3760s, which are handheld, battery-powered device normally meant to be used as personal organizers (PDAs), as sensor nodes. The iPAQ provide a reasonable balance of cost, availability, and functionality. It has a build in StrongARM processor, microphone, codec for acoustic acquisition and processing, and a PCMCIA bus for external IEEE 802.11b wireless cards for radio communication. The iPAQs form a distributed sensor network to perform real-time acoustical beamforming. Computational times and associated real-time processing tasks are described. Field measured results for linear, triangular, and square subarrays in free-space and reverberant scenarios are presented. These results show the effective and robust operation of the proposed algorithms and their implementations on a real-time acoustical wireless testbed.Wireless sensor networks have been attracting increasing research interest given the recent advances in microelectronics, array processing, and wireless networking. Consisting of a large collection of small, wireless, low-cost, integrated sensing, computing and communicating nodes capable of performing various demanding collaborative space-time processing tasks, wireless sensor network technology poses various unique design challenges, particularly for real-time operation. We review the approximate maximum-likelihood (AML) method for source localization and direction-of-arrival (DOA) estimation. Then, we consider the use of least-squares method (LS) method applied to DOA bearing crossings to perform source localization. A novel virtual array model applicable to the AML-DOA estimation method is proposed for reverberant scenarios. Details on the wireless acoustical testbed are given. We consider the use of Compaq iPAQ 3760s, which are handheld, battery-powered device normally meant to be used as personal organizers (PDAs), as sensor nodes. The iPAQ provide a reasonable balance of cost, availability, and functionality. It has a build in StrongARM processor, microphone, codec for acoustic acquisition and processing, and a PCMCIA bus for external IEEE 802.11b wireless cards for radio communication. The iPAQs form a distributed sensor network to perform real-time acoustical beamforming. Computational times and associated real-time processing tasks are described. Field measured results for linear, triangular, and square subarrays in free-space and reverberant scenarios are presented. These results show the effective and robust operation of the proposed algorithms and their implementations on a real-time acoustical wireless testbed.


international conference on acoustics, speech, and signal processing | 2001

A maximum-likelihood parametric approach to source localizations

Joe C. Chen; Ralph E. Hudson; Kung Yao

Source localization using passive sensor arrays has been an active research problem for many years. Most near-field source localization algorithms involve two separate estimations, namely, relative time-delay estimations and source location estimation. A one-step maximum-likelihood parametric source localization algorithm is proposed based on the maximum correlation between time shifted sensor data at the true source location. The performance of the algorithm is evaluated and shown to approach the Cramer-Rao bound asymptotically in simulations.


IEEE Transactions on Signal Processing | 2008

Stochastic Maximum-Likelihood DOA Estimation in the Presence of Unknown Nonuniform Noise

Chiao-En Chen; Flavio Lorenzelli; Ralph E. Hudson; Kung Yao

This correspondence investigates the direction-of-arrival (DOA) estimation of multiple narrowband sources in the presence of nonuniform white noise with an arbitrary diagonal covariance matrix. While both the deterministic and stochastic Cramer-Rao bound (CRB) and the deterministic maximum-likelihood (ML) DOA estimator under this model have been derived by Pesavento and Gershman, the stochastic ML DOA estimator under the same setting is still not available in the literature. In this correspondence, a new stochastic ML DOA estimator is derived. Its implementation is based on an iterative procedure which concentrates the log-likelihood function with respect to the signal and noise nuisance parameters in a stepwise fashion. A modified inverse iteration algorithm is also presented for the estimation of the noise parameters. Simulation results have shown that the proposed algorithm is able to provide significant performance improvement over the conventional uniform ML estimator in nonuniform noise environments and require only a few iterations to converge to the nonuniform stochastic CRB.


signal processing systems | 2009

An Empirical Study of Collaborative Acoustic Source Localization

Andreas M. Ali; Shadnaz Asgari; Travis C. Collier; Michael Allen; Lewis Girod; Ralph E. Hudson; Kung Yao; Charles E. Taylor; Daniel T. Blumstein

Field biologists use animal sounds to discover the presence of individuals and to study their behavior. Collecting bio-acoustic data has traditionally been a difficult and time-consuming process in which researchers use portable microphones to record sounds while taking notes of their own detailed observations. The recent development of new deployable acoustic sensor platforms presents opportunities to develop automated tools for bio-acoustic field research. In this work, we implement both two-dimensional (2D) and three-dimensional (3D) AML-based source localization algorithms. The 2D algorithm is used to localize marmot alarm-calls of marmots on the meadow ground. The 3D algorithm is used to localize the song of Acorn Woodpecker and Mexican Antthrush birds situated above the ground. We assess the performance of these techniques based on the results from four field experiments: two controlled test of direction-of-arrival (DOA) accuracy using a pre-recorded source signal for 2D and 3D analysis, an experiment to detect and localize actual animals in their habitat, with a comparison to ground truth gathered from human observations, and a controlled test of localization experiment using pre-recorded source to enable careful ground truth measurements. Although small arrays yield ambiguities from spatial aliasing of high frequency signals, we show that these ambiguities are readily eliminated by proper bearing crossings of the DOAs from several arrays. These results show that the AML source localization algorithm can be used to localize actual animals in their natural habitat using a platform that is practical to deploy.

Collaboration


Dive into the Ralph E. Hudson's collaboration.

Top Co-Authors

Avatar

Kung Yao

University of California

View shared research outputs
Top Co-Authors

Avatar

K. Yao

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joe C. Chen

University of California

View shared research outputs
Top Co-Authors

Avatar

Andreas M. Ali

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shadnaz Asgari

California State University

View shared research outputs
Top Co-Authors

Avatar

Len Yip

University of California

View shared research outputs
Top Co-Authors

Avatar

Chiao-En Chen

National Chung Cheng University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge