Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ralph E. Parchment is active.

Publication


Featured researches published by Ralph E. Parchment.


Journal of Clinical Oncology | 2009

Phase 0 Clinical Trial of the Poly (ADP-Ribose) Polymerase Inhibitor ABT-888 in Patients With Advanced Malignancies

Shivaani Kummar; Robert J. Kinders; Martin Gutierrez; Larry Rubinstein; Ralph E. Parchment; Lawrence R. Phillips; Jiuping Ji; Anne Monks; Jennifer A. Low; Alice Chen; Anthony J. Murgo; Jerry M. Collins; Seth M. Steinberg; Helen Eliopoulos; Vincent L. Giranda; Gary Gordon; Lee J. Helman; Robert H. Wiltrout; Joseph E. Tomaszewski; James H. Doroshow

PURPOSE We conducted the first phase 0 clinical trial in oncology of a therapeutic agent under the Exploratory Investigational New Drug Guidance of the US Food and Drug Administration. It was a first-in-human study of the poly (ADP-ribose) polymerase (PARP) inhibitor ABT-888 in patients with advanced malignancies. PATIENTS AND METHODS ABT-888 was administered as a single oral dose of 10, 25, or 50 mg to determine the dose range and time course over which ABT-888 inhibits PARP activity in tumor samples and peripheral blood mononuclear cells, and to evaluate ABT-888 pharmacokinetics. Blood samples and tumor biopsies were obtained pre- and postdrug administration for evaluation of PARP activity and pharmacokinetics. A novel statistical approach was developed and utilized to study pharmacodynamic modulation as the primary end point for trials of limited sample size. RESULTS Thirteen patients with advanced malignancies received the study drug; nine patients underwent paired tumor biopsies. ABT-888 demonstrated good oral bioavailability and was well tolerated. Statistically significant inhibition of poly (ADP-ribose) levels was observed in tumor biopsies and peripheral blood mononuclear cells at the 25-mg and 50-mg dose levels. CONCLUSION Within 5 months of study activation, we obtained pivotal biochemical and pharmacokinetic data that have guided the design of subsequent phase I trials of ABT-888 in combination with DNA-damaging agents. In addition to accelerating the development of ABT-888, the rapid conclusion of this trial demonstrates the feasibility of conducting proof-of-principle phase 0 trials as part of an alternative paradigm for early drug development in oncology.


Clinical Cancer Research | 2010

Guidelines for the Development and Incorporation of Biomarker Studies in Early Clinical Trials of Novel Agents

Janet Dancey; Kevin K. Dobbin; Susan Groshen; J. Milburn Jessup; Andrew H. Hruszkewycz; Maria Koehler; Ralph E. Parchment; Mark J. Ratain; Lalitha K. Shankar; Walter M. Stadler; Lawrence D. True; Amy Gravell; Michael R. Grever

The National Cancer Institute (NCI) Investigational Drug Steering Committee (IDSC) charged the Biomarker Task Force to develop recommendations to improve the decisions about incorporation of biomarker studies in early investigational drug trials. The Task Force members reviewed biomarker trials, the peer-reviewed literature, NCI and U.S. Food and Drug Administration (FDA) guidance documents, and conducted a survey of investigators to determine practices and challenges to executing biomarker studies in clinical trials of new drugs in early development. This document provides standard definitions and categories of biomarkers, and lists recommendations to sponsors and investigators for biomarker incorporation into such trials. Our recommendations for sponsors focus on the identification and prioritization of biomarkers and assays, the coordination of activities for the development and use of assays, and for operational activities. We also provide recommendations for investigators developing clinical trials with biomarker studies for scientific rationale, assay criteria, trial design, and analysis. The incorporation of biomarker studies into early drug trials is complex. Thus the decision to proceed with studies of biomarkers should be based on balancing the strength of science, assay robustness, feasibility, and resources with the burden of proper sample collection on the patient and potential impact of the results on drug development. The Task Force provides these guidelines in the hopes that improvements in biomarker studies will enhance the efficiency of investigational drug development. Clin Cancer Res; 16(6); 1745–55


Clinical Cancer Research | 2010

Histone γH2AX and Poly(ADP-Ribose) as Clinical Pharmacodynamic Biomarkers

Christophe E. Redon; Asako J. Nakamura; Yong-Wei Zhang; Jiuping Ji; William M. Bonner; Robert J. Kinders; Ralph E. Parchment; James H. Doroshow; Yves Pommier

Tumor cells are often deficient in DNA damage response (DDR) pathways, and anticancer therapies are commonly based on genotoxic treatments using radiation and/or drugs that damage DNA directly or interfere with DNA metabolism, leading to the formation of DNA double-strand breaks (DSB), and ultimately to cell death. Because DSBs induce the phosphorylation of histone H2AX (γH2AX) in the chromatin flanking the break site, an antibody directed against γH2AX can be employed to measure DNA damage levels before and after patient treatment. Poly(ADP-ribose) polymerases (PARP1 and PARP2) are also activated by DNA damage, and PARP inhibitors show promising activity in cancers with defective homologous recombination (HR) pathways for DSB repair. Ongoing clinical trials are testing combinations of PARP inhibitors with DNA damaging agents. Poly(ADP-ribosylation), abbreviated as PAR, can be measured in clinical samples and used to determine the efficiency of PARP inhibitors. This review summarizes the roles of γH2AX and PAR in the DDR, and their use as biomarkers to monitor drug response and guide clinical trials, especially phase 0 clinical trials. We also discuss the choices of relevant samples for γH2AX and PAR analyses. Clin Cancer Res; 16(18); 4532–42. ©2010 AACR.


Cancer Research | 2011

Phase I Study of PARP Inhibitor ABT-888 in Combination with Topotecan in Adults with Refractory Solid Tumors and Lymphomas

Shivaani Kummar; Alice Chen; Jiuping Ji; Yiping Zhang; Joel M. Reid; Lee Jia; Marcie K. Weil; Giovanna Speranza; Anthony J. Murgo; Robert J. Kinders; Lihua Wang; Ralph E. Parchment; John Carter; Howard Stotler; Larry Rubinstein; Melinda G. Hollingshead; Giovanni Melillo; Yves Pommier; William M. Bonner; Joseph E. Tomaszewski; James H. Doroshow

A phase I trial of ABT-888 (veliparib), a PARP inhibitor, in combination with topotecan, a topoisomerase I-targeted agent, was carried out to determine maximum tolerated dose (MTD), safety, pharmacokinetics, and pharmacodynamics of the combination in patients with refractory solid tumors and lymphomas. Varying schedules and doses of intravenous topotecan in combination with ABT-888 (10 mg) administered orally twice a day (BID) were evaluated. Plasma and urine pharmacokinetics were assessed and levels of poly(ADP-ribose) (PAR) and the DNA damage marker γH2AX were measured in tumor and peripheral blood mononuclear cells (PBMC). Twenty-four patients were enrolled. Significant myelosuppression limited the ability to coadminister ABT-888 with standard doses of topotecan, necessitating dose reductions. Preclinical studies using athymic mice carrying human tumor xenografts also informed schedule changes. The MTD was established as topotecan 0.6 mg/m²/d and ABT-888 10 mg BID on days one to five of 21-day cycles. Topotecan did not alter the pharmacokinetics of ABT-888. A more than 75% reduction in PAR levels was observed in 3 paired tumor biopsy samples; a greater than 50% reduction was observed in PBMCs from 19 of 23 patients with measurable levels. Increases in γH2AX response in circulating tumor cells (CTC) and PBMCs were observed in patients receiving ABT-888 with topotecan. We show a mechanistic interaction of a PARP inhibitor, ABT-888, with a topoisomerase I inhibitor, topotecan, in PBMCs, tumor, and CTCs. Results of this trial reveal that PARP inhibition can modulate the capacity to repair topoisomerase I-mediated DNA damage in the clinic.


Clinical Cancer Research | 2012

A Phase I Study of Veliparib in Combination with Metronomic Cyclophosphamide in Adults with Refractory Solid Tumors and Lymphomas

Shivaani Kummar; Jiuping Ji; Robert J. Morgan; Heinz-Josef Lenz; Shannon Puhalla; Chandra P. Belani; David R. Gandara; Deborah Allen; Brian F. Kiesel; Jan H. Beumer; Edward M. Newman; Larry Rubinstein; Alice Chen; Yiping Zhang; Lihua Wang; Robert J. Kinders; Ralph E. Parchment; Joseph E. Tomaszewski; James H. Doroshow

Purpose: Oral administration of the alkylating agent cyclophosphamide at low doses, metronomic dosing, is well tolerated, with efficacy in multiple tumor types. PARP inhibition potentiates effects of cyclophosphamide in preclinical models. We conducted a phase I trial of the PARP inhibitor veliparib and metronomic cyclophosphamide in patients with refractory solid tumors and lymphoid malignancies. Experimental Design: Objectives were to establish the safety and maximum tolerated dose (MTD) of the combination; characterize veliparib pharmacokinetics (PK); measure poly(ADP-ribose) (PAR), a product of PARP, in tumor biopsies and peripheral blood mononuclear cells (PBMC); and measure the DNA-damage marker γH2AX in PBMCs and circulating tumor cells (CTC). Cyclophosphamide was administered once daily in 21-day cycles in combination with veliparib administered once daily for 7, 14, or 21 days. Results: Thirty-five patients were enrolled. The study treatment was well tolerated, and the MTD was established as veliparib 60 mg with cyclophosphamide 50 mg given once daily. Seven patients had partial responses; an additional six patients had disease stabilization for at least six cycles. PAR was significantly decreased in PBMCs (by at least 50%) and tumor biopsies (by at least 80%) across dose levels (DL); γH2AX levels were increased in CTCs from seven of nine patients evaluated after drug administration. Conclusions: The combination of veliparib with metronomic cyclophosphamide is well tolerated and shows promising activity in a subset of patients with BRCA mutations. A phase II trial of the combination compared with single-agent cyclophosphamide is ongoing in BRCA-positive ovarian cancer, triple-negative breast cancer, and low-grade lymphoma. Clin Cancer Res; 18(6); 1726–34. ©2012 AACR.


Molecular Cancer Therapeutics | 2009

Increased antitumor activity of bevacizumab in combination with hypoxia inducible factor-1 inhibition

Annamaria Rapisarda; Melinda G. Hollingshead; Badarch Uranchimeg; Carrie Bonomi; Suzanne Borgel; John Carter; Bradley Gehrs; Mark Raffeld; Robert J. Kinders; Ralph E. Parchment; Miriam R. Anver; Robert H. Shoemaker; Giovanni Melillo

Inhibition of hypoxia inducible factor-1 (HIF-1) is an attractive therapeutic strategy to target the tumor microenvironment. However, HIF-1 inhibitors may have limited activity as single agents and combination therapies may be required. We tested the hypothesis that HIF-1 inhibition in a hypoxic-stressed tumor microenvironment, which could be generated by administration of antiangiogenic agents, may result in a more pronounced therapeutic effect. The activity of bevacizumab, either alone or in combination with the HIF-1α inhibitor topotecan, was evaluated in U251-HRE xenografts. Tumor tissue was collected at the end of treatment and changes in tumor oxygenation, angiogenesis, proliferation, apoptosis, HIF-1α levels, HIF-1 target genes, and DNA damage were evaluated. Bevacizumab decreased microvessel-density and increased intratumor-hypoxia, but did not induce apoptosis. Moreover, bevacizumab alone caused a significant increase of HIF-1–dependent gene expression in tumor tissue. Addition of a low dose of daily topotecan to bevacizumab significantly inhibited tumor growth, relative to mice treated with topotecan or bevacizumab alone (P < 0.01). The addition of topotecan to bevacizumab was also associated with profound inhibition of HIF-1 transcriptional activity, significant inhibition of proliferation, and induction of apoptosis. Importantly, DNA damage induced by topotecan alone was not augmented by addition of bevacizumab, suggesting that increased cytotoxic activity did not account for the increased antitumor effects observed. These results strongly suggest that combination of anti–vascular endothelial growth factor antibodies with HIF-1 inhibitors is an attractive therapeutic strategy targeting in the hypoxic tumor microenvironment. [Mol Cancer Ther 2009;8(7):1867–77]


Urology | 1999

Taxanes: an overview of the pharmacokinetics and pharmacodynamics

Ulka N. Vaishampayan; Ralph E. Parchment; Bhaskara R. Jasti; Maha Hussain

Paclitaxel and docetaxel have emerged in the last two decades as effective antitumor agents in a variety of malignancies. Paclitaxel is a semisynthetic taxane isolated from bark of the Pacific yew tree. Docetaxel is a semisynthetic taxane derived from the needles of the European yew (Taxus baccata). These compounds bind to tubulin, leading to microtubule stabilization, mitotic arrest and, subsequently, cell death. Plasma clearance of paclitaxel exhibits nonlinear kinetics, which results in a disproportionate change in plasma concentration and area under the curve (AUC) with dose alterations. In contrast, docetaxel has a linear disposition over the dose ranges used clinically, so its concentration changes linearly with changes in the dosage. Premedicating with corticosteroids and histamine H1 and H2 receptor antagonists is advocated prior to paclitaxel administration; prior to docetaxel administration, premedication with corticosteroids is suggested. The taxanes are metabolized in the liver by the cytochrome P-450 enzymes and are eliminated in the bile. The known metabolites are either inactive or less potent than the parent compounds. The toxic effects associated with paclitaxel therapy are mainly neutropenia, peripheral neuropathy, and, rarely, cardiotoxicity. Docetaxel toxicity produces mainly myelosuppression and a cumulative dose fluid retention syndrome. Paclitaxel demonstrates sequence-dependent interactions with cisplatin, cyclophosphamide, and doxorubicin. Docetaxel has shown increased myelosuppression with preceding ifosfamide in a preliminary study. The future holds increasing indications for taxanes in newer combination regimens; consideration of their pharmacologic characteristics is an important aspect of designing and applying new taxane-based treatment regimens.


Toxicology in Vitro | 2001

Prevalidation of a model for predicting acute neutropenia by colony forming unit granulocyte/macrophage (CFU-GM) assay

Augusto Pessina; Beatriz Albella; Juan A. Bueren; P. Brantom; Silvia Casati; Laura Gribaldo; Cristina Croera; G. Gagliardi; P. Foti; Ralph E. Parchment; Dominique Parent-Massin; Y. Sibiril; Greet Schoeters; R. Van Den Heuvel

This report describes an international prevalidation study conducted to optimise the Standard Operating Procedure (SOP) for detecting myelosuppressive agents by CFU-GM assay and to study a model for predicting (by means of this in vitro hematopoietic assay) the acute xenobiotic exposure levels that cause maximum tolerated decreases in absolute neutrophil counts (ANC). In the first phase of the study (Protocol Refinement), two SOPs were assessed, by using two cell culture media (Test A, containing GM-CSF; and Test B, containing G-CSF, GM-CSF, IL-3, IL-6 and SCF), and the two tests were applied to cells from both human (bone marrow and umbilical cord blood) and mouse (bone marrow) CFU-GM. In the second phase (Protocol Transfer), the SOPs were transferred to four laboratories to verify the linearity of the assay response and its interlaboratory reproducibility. After a further phase (Protocol Performance), dedicated to a training set of six anticancer drugs (adriamycin, flavopindol, morpholino-doxorubicin, pyrazoloacridine, taxol and topotecan), a model for predicting neutropenia was verified. Results showed that the assay is linear under SOP conditions, and that the in vitro endpoints used by the clinical prediction model of neutropenia are highly reproducible within and between laboratories. Valid tests represented 95% of all tests attempted. The 90% inhibitory concentration values (IC(90)) from Test A and Test B accurately predicted the human maximum tolerated dose (MTD) for five of six and for four of six myelosuppressive anticancer drugs, respectively, that were selected as prototype xenobiotics. As expected, both tests failed to accurately predict the human MTD of a drug that is a likely protoxicant. It is concluded that Test A offers significant cost advantages compared to Test B, without any loss of performance or predictive accuracy. On the basis of these results, we proposed a formal Phase II validation study using the Test A SOP for 16-18 additional xenobiotics that represent the spectrum of haematotoxic potential.


BMC Medicine | 2012

Advances in using PARP inhibitors to treat cancer

Shivaani Kummar; Alice Chen; Ralph E. Parchment; Robert J. Kinders; Jay Ji; Joseph E. Tomaszewski; James H. Doroshow

The poly (ADP-ribose) polymerase (PARP) family of enzymes plays a critical role in the maintenance of DNA integrity as part of the base excision pathway of DNA repair. PARP1 is overexpressed in a variety of cancers, and its expression has been associated with overall prognosis in cancer, especially breast cancer. A series of new therapeutic agents that are potent inhibitors of the PARP1 and PARP2 isoforms have demonstrated important clinical activity in patients with breast or ovarian cancers that are caused by mutations in either the BRCA1 or 2 genes. Results from such studies may define a new therapeutic paradigm, wherein simultaneous loss of the capacity to repair DNA damage may have antitumor activity in itself, as well as enhance the antineoplastic potential of cytotoxic chemotherapeutic agents.


Clinical Cancer Research | 2008

Designing Phase 0 Cancer Clinical Trials

Anthony J. Murgo; Shivaani Kummar; Larry Rubinstein; Martin Gutierrez; Jerry M. Collins; Robert J. Kinders; Ralph E. Parchment; Jiuping Ji; Seth M. Steinberg; Sherry X. Yang; Melinda G. Hollingshead; Alice Chen; Lee J. Helman; Robert H. Wiltrout; Joseph E. Tomaszewski; James H. Doroshow

Phase 0 trials are designed primarily to evaluate the pharmacodynamic and/or pharmacokinetic properties of selected investigational agents before initiating more traditional phase I testing. One of the major objectives of phase 0 trials is to interrogate and refine a target or biomarker assay for drug effect in human samples implementing procedures developed and validated in preclinical models. Thus, close collaboration between laboratory scientists and clinical investigators is essential to the design and conduct of phase 0 trials. Given the relatively small number of patients and tissue samples, showing a significant drug effect in phase 0 trials requires precise and reproducible assay procedures and innovative statistical methodology. Furthermore, phase 0 trials involving limited exposure of a study agent administered at low doses and/or for a short period allow them to be initiated under the Food and Drug Administration exploratory investigational new drug guidance with less preclinical toxicity data than usually required for traditional first-in-human studies. Because of the very limited drug exposure, phase 0 trials offer no chance of therapeutic benefit, which can impede patient enrollment, particularly if invasive tumor biopsies are required. The challenges to accrual are not insurmountable, however, and well-designed and executed phase 0 trials are feasible and have great potential for improving the efficiency and success of subsequent trials, particularly those evaluating molecularly targeted agents.

Collaboration


Dive into the Ralph E. Parchment's collaboration.

Top Co-Authors

Avatar

James H. Doroshow

City of Hope National Medical Center

View shared research outputs
Top Co-Authors

Avatar

Joseph E. Tomaszewski

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alice Chen

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Larry Rubinstein

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge