Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ralph J. Portier is active.

Publication


Featured researches published by Ralph J. Portier.


Bioresource Technology | 2003

Adsorption of volatile organic compounds by pecan shell-and almond shell-based granular activated carbons

Rishipal R. Bansode; J.N. Losso; Wayne E. Marshall; Ramu M Rao; Ralph J. Portier

The objective of this research was to determine the effectiveness of using pecan and almond shell-based granular activated carbons (GACs) in the adsorption of volatile organic compounds (VOCs) of health concern and known toxic compounds (such as bromo-dichloromethane, benzene, carbon tetrachloride, 1,1,1-trichloromethane, chloroform, and 1,1-dichloromethane) compared to the adsorption efficiency of commercially used carbons (such as Filtrasorb 200, Calgon GRC-20, and Waterlinks 206C AW) in simulated test medium. The pecan shell-based GACs were activated using steam, carbon dioxide or phosphoric acid. An almond shell-based GAC was activated with phosphoric acid. Our results indicated that steam- or carbon dioxide-activated pecan shell carbons were superior in total VOC adsorption to phosphoric acid-activated pecan shell or almond shell carbons, inferring that the method of activation selected for the preparation of activated carbons affected the adsorption of VOCs and hence are factors to be considered in any adsorption process. The steam-activated, pecan shell carbon adsorbed more total VOCs than the other experimental carbons and had an adsorption profile similar to the two coconut shell-based commercial carbons, but had greater adsorption than the coal-based commercial carbon. All the carbons studied adsorbed benzene more effectively than the other organics. Pecan shell, steam-activated and acid-activated GACs showed higher adsorption of 1,1,1-trichloroethane than the other carbons studied. Multivariate analysis was conducted to group experimental carbons and commercial carbons based on their physical, chemical, and adsorptive properties. The results of the analysis conclude that steam-activated and acid-activated pecan shell carbons clustered together with coal-based and coconut shell-based commercial carbons, thus inferring that these experimental carbons could potentially be used as alternative sources for VOC adsorption in an aqueous environment.


Bioresource Technology | 2003

Adsorption of metal ions by pecan shell-based granular activated carbons

Rishipal R. Bansode; J.N. Losso; Wayne E. Marshall; Ramu M Rao; Ralph J. Portier

The present investigation was undertaken to evaluate the adsorption effectiveness of pecan shell-based granular activated carbons (GACs) in removing metal ions (Cu(2+), Pb(2+), Zn(2+)) commonly found in municipal and industrial wastewater. Pecan shells were activated by phosphoric acid, steam or carbon dioxide activation methods. Metal ion adsorption of shell-based GACs was compared to the metal ion adsorption of a commercial carbon, namely, Calgons Filtrasorb 200. Adsorption experiments were conducted using solutions containing all three metal ions in order to investigate the competitive effects of the metal ions as would occur in contaminated wastewater. The results obtained from this study showed that acid-activated pecan shell carbon adsorbed more lead ion and zinc ion than any of the other carbons, especially at carbon doses of 0.2-1.0%. However, steam-activated pecan shell carbon adsorbed more copper ion than the other carbons, particularly using carbon doses above 0.2%. In general, Filtrasorb 200 and carbon dioxide-activated pecan shell carbons were poor metal ion adsorbents. The results indicate that acid- and steam-activated pecan shell-based GACs are effective metal ion adsorbents and can potentially replace typical coal-based GACs in treatment of metal contaminated wastewater.


Estuaries | 1990

Stable isotopes and cellulase activity as evidence for detritus as a food source for juvenile Gulf Menhaden

Linda A. Deegan; Bruce J. Peterson; Ralph J. Portier

Menhaden are one of the most abundant components of fish communities in Gulf and Atlantic estuaries. Juvenile menhaden have been reported to have zooplankton, phytoplankton, andSpartina-derived detritus in their guts. However, there has been disagreement over the importance of the detritus as a food source. We show, using physiological and stable isotope evidence, that detritus can be used by juvenile Gulf menhaden. Their diet is very roughly 30% detritus- and 70% plankton-based.


Journal of Epidemiology and Community Health | 2016

Differences in the carcinogenic evaluation of glyphosate between the International Agency for Research on Cancer (IARC) and the European Food Safety Authority (EFSA)

Christopher J. Portier; Bruce K. Armstrong; Bruce C. Baguley; Xaver Baur; Igor Belyaev; Robert Bellé; Fiorella Belpoggi; Annibale Biggeri; Maarten C. Bosland; Paolo Bruzzi; Lygia T. Budnik; Merete D. Bugge; Kathleen Burns; Gloria M. Calaf; David O. Carpenter; Hillary M. Carpenter; Lizbeth López-Carrillo; Richard W. Clapp; Pierluigi Cocco; Dario Consonni; Pietro Comba; Elena Craft; Mohamed Aqiel Dalvie; Devra Lee Davis; Paul A. Demers; Anneclaire J. De Roos; Jamie C. DeWitt; Francesco Forastiere; Jonathan H. Freedman; Lin Fritschi

The International Agency for Research on Cancer (IARC) Monographs Programme identifies chemicals, drugs, mixtures, occupational exposures, lifestyles and personal habits, and physical and biological agents that cause cancer in humans and has evaluated about 1000 agents since 1971. Monographs are written by ad hoc Working Groups (WGs) of international scientific experts over a period of about 12 months ending in an eight-day meeting. The WG evaluates all of the publicly available scientific information on each substance and, through a transparent and rigorous process,1 decides on the degree to which the scientific evidence supports that substances potential to cause or not cause cancer in humans. For Monograph 112,2 17 expert scientists evaluated the carcinogenic hazard for four insecticides and the herbicide glyphosate.3 The WG concluded that the data for glyphosate meet the criteria for classification as a probable human carcinogen . The European Food Safety Authority (EFSA) is the primary agency of the European Union for risk assessments regarding food safety. In October 2015, EFSA reported4 on their evaluation of the Renewal Assessment Report5 (RAR) for glyphosate that was prepared by the Rapporteur Member State, the German Federal Institute for Risk Assessment (BfR). EFSA concluded that ‘glyphosate is unlikely to pose a carcinogenic hazard to humans and the evidence does not support classification with regard to its carcinogenic potential’. Addendum 1 (the BfR Addendum) of the RAR5 discusses the scientific rationale for differing from the IARC WG conclusion. Serious flaws in the scientific evaluation in the RAR incorrectly characterise the potential for a carcinogenic hazard from exposure to glyphosate. Since the RAR is the basis for the European Food Safety Agency (EFSA) conclusion,4 it is critical that these shortcomings are corrected. EFSA concluded ‘that there is very limited evidence for an association between glyphosate-based formulations …


Journal of Environmental Science and Health Part B-pesticides Food Contaminants and Agricultural Wastes | 2004

Ecological risk assessment of neem-based pesticides.

Ipek Goktepe; Ralph J. Portier; Mohamed Ahmedna

Abstract A tiered process was used to evaluate the risks of pure azadirachtin (AZA) and two neem-based insecticides (Neemix™ and Bioneem™) on six aquatic animals [crayfish (Procambarus clarkii), white shrimp (Penaeus setiferus), grass shrimp (Palaemonetes pugio), blue crabs (Callinectes sapidus), water fleas (Daphnia pulex), and mosquito larvae (Culex quinquefasciatus)] through short term acute toxicity tests. The risk was calculated using the level of concern endpoints (Q values) and relative hazard index (RHI) for acute and chronic exposure scenarios. The Q values of Neemix™, Bioneem™, and pure AZA derived from acute exposure tests indicated that D. pulex is the only sensitive species to the test pesticides. Furthermore, the RHI values of Neemix™ and Bioneem™ for D. pulex were above the critical limit of 10 indicating that these pesticides may pose a moderate hazard to this species and related crustaceans in acute exposure scenarios. The RHI values of the two pesticides and pure AZA were all below the critical limit of 10 for P. clarkii, P. setiferus, P. pugio, C. sapidus, and C. quinquefasciatus. The aquatic risk assessment process showed that the risk values of tested pesticides did not exceed the criteria, and therefore, no ecological hazard is likely to result from their use.


Comparative Biochemistry and Physiology B | 2008

Biochemical properties of alligator (Alligator mississippiensis) bone collagen.

Ashley Wood; Masahiro Ogawa; Ralph J. Portier; Mark Schexnayder; Mark Shirley; Jack N. Losso

Acid-soluble collagen (ASC) and pepsin solubilized collagen (PSC) isolated and purified from alligator (Alligator mississippiensis) bone were studied for molecular size, amino acid profile, secondary structure, and denaturation temperature by SDS-PAGE, HPLC, circular dichroism, and viscometry. Two collagen subunits, alpha1 and alpha2 were identified by SDS-PAGE. The molecular masses for alpha1 and alpha2 chains of ASC were 124 kDa and 111 kDa, respectively. The molecular masses were 123 kDa for alpha1 and 110 kDa for alpha2 chains of the PSC preparation. The molecular masses for ([alpha1](2) alpha2) of ASC and PSC were 359 kDa and 356 kDa, respectively. The major composition of alligator bone ASC and PSC was found to be typical type I collagen. The amino acid profiles of alligator ASC and PSC were similar to amino acid profile of subtropical fish black drum (Pogonias cromis, Sciaenidae) bone. Comparison of amino acid profiles with shark cartilage PSC, showed differences in alanine, hydroxylysine, lysine, and histidine contents. The denaturation temperatures (T(d)) of alligator ASC and PSC collagen measured by viscometry were 38.1 and 38.2 degrees C, respectively. Thermal denaturation temperatures, measured by melting point using circular dichroism, were 37.6 and 37.9 degrees C, respectively. Taken together, these results suggest that alligator bone collagen may find a wide range of applications in biological research, functional foods and nutraceuticals, and biomedical and pharmaceutical research.


Chemosphere | 2016

Assessment of the toxic potential of polycyclic aromatic hydrocarbons (PAHs) affecting Gulf menhaden (Brevoortia patronus) harvested from waters impacted by the BP Deepwater Horizon Spill

Gregory M. Olson; Buffy M. Meyer; Ralph J. Portier

Approximately 4.9 million barrels of crude oil and gas were released into the Gulf of Mexico (GoM) from April to July 2010 during the Deepwater Horizon (DWH) spill. This resulted in the possible contamination of marine organisms with polycyclic aromatic hydrocarbons (PAHs), USEPA identified constituents of concern. To determine the impact of the DWH oil spill, Gulf menhaden (Brevoortia patronus), a commercially harvested and significant trophic grazing species, was sampled from two Louisiana coastal regions between the years 2011-2013. Tissue extraction and GC/MS analysis demonstrated measurable concentrations of PAH within menhaden. Analysis yielded total PAHs, carcinogenic equivalents (BaP-TEQ), and mutagenic equivalents (BaP-MEQ) which provided an initial toxic potential assessment of this GoM Fishery. Gulf menhaden contained less total PAH concentrations in 2012 and significantly less in 2013 as compared to 2011 (p < 0.05) ranging from 7 ug/g tissue dry weight to 3 ng/g tissue dry weight. Carcinogenic and mutagenic PAHs were also significantly reduced (p < 0.05) over the three year period. The reduction of total PAH concentrations and the reduction of BaP-TEQs and MEQs between 2011 and 2013 indicates a diminished input of new source PAHs along with a reduction of carcinogenic and mutagenic PAHs in menhaden populations. The use of Gulf menhaden was successful in determining the acute toxic potential of PAHs contaminating the GoM in the years directly following the DWH spill event.


Environmental Toxicology and Chemistry | 2007

Aspects of petrochemical pollution in southeastern Louisiana (USA): Pre-Katrina background and source characterization

Javed Iqbal; David Gisclair; Debra J. McMillin; Ralph J. Portier

Background petroleum pollution before Hurricane Katrina in southeastern Louisiana (USA) coastal sediments was evaluated at 320 locations in three consecutive years for polycyclic aromatic hydrocarbons (PAHs), saturated alkanes (nC9-nC35), and petroleum biomarker compounds (hopanes, steranes, pristane, and phytane). Approximately 90% of the sample locations had a total PAH concentration of less than 2.0 microg/g and total saturated alkane concentration of less than 17 microg/g, with 50% indicating a total PAH concentration of less than 200 ng/g. Upper limit or baseline high concentration for total PAHs was 1.5 microg/g, comparable to the 2.18 microg/g reported for the National Status and Trends (NST) Program of the National Oceanic and Atmospheric Administration (NOAA). Thus, 85% of sites were below the baseline high concentration. Baseline high total PAHs at 6% of the sites (described as land) was 5.1 microg/g, comparable to the 4 microg/g benchmark calculated for NST. The three-year average total PAH concentration for 95% of the sites was less than 7.5 microg/g, a defined limit of fivefold the baseline high concentration. Samples indicated petrogenic, pyrogenic, and natural/biogenic hydrocarbon inputs. Contaminant levels exceeded the state soil screening limits at only 3% of the 320 locations. Federal screening limits proposed by the NOAA for ecological effects were exceeded at only 18% of the sites (including those sites exceeding the state limit). Only 4% of the sites had concentrations exceeding the NOAA effect range-low (ER-L) in more than one collection year. At least 61% of the analytes exceeding the ER-L were pyrogenic source indicators. Source-fingerprint analysis of these selected samples showed 10 samples with notable petroleum contamination, whereas six indicated pyrogenic input. Of all samples collected, only one site showed relatively fresh/lightly weathered petroleum.


Biotechnology Research International | 2013

Bioremediating Oil Spills in Nutrient Poor Ocean Waters Using Fertilized Clay Mineral Flakes: Some Experimental Constraints

Laurence N. Warr; André Friese; Florian Schwarz; Frieder Schauer; Ralph J. Portier; Laura M. Basirico; Gregory M. Olson

Much oil spill research has focused on fertilizing hydrocarbon oxidising bacteria, but a primary limitation is the rapid dilution of additives in open waters. A new technique is presented for bioremediation by adding nutrient amendments to the oil spill using thin filmed minerals comprised largely of Fullers Earth clay. Together with adsorbed N and P fertilizers, filming additives, and organoclay, clay flakes can be engineered to float on seawater, attach to the oil, and slowly release contained nutrients. Our laboratory experiments of microbial activity on weathered source oil from the Deepwater Horizon spill in the Gulf of Mexico show fertilized clay treatment significantly enhanced bacterial respiration and consumption of alkanes compared to untreated oil-in-water conditions and reacted faster than straight fertilization. Whereas a major portion (up to 98%) of the alkane content was removed during the 1 month period of experimentation by fertilized clay flake interaction; the reduced concentration of polyaromatic hydrocarbons was not significantly different from the non-clay bearing samples. Such clay flake treatment could offer a way to more effectively apply the fertilizer to the spill in open nutrient poor waters and thus significantly reduce the extent and duration of marine oil spills, but this method is not expected to impact hydrocarbon toxicity.


Marine Environmental Research | 2015

Chemical and histological comparisons between Brevoortia sp. (menhaden) collected in fall 2010 from Barataria Bay, LA and Delaware Bay, NJ following the DeepWater Horizon (DWH) oil spill.

Carolyn S. Bentivegna; Keith R. Cooper; Gregory M. Olson; Edwin A. Pena; Daniel R. Millemann; Ralph J. Portier

Body burdens of PAHs were compared to histological effects in menhaden (Family: Clupeidae, Genus: Brevoortia) collected in fall 2010 from Barataria Bay, LA (BBLA) and Delaware Bay, NJ (DBNJ). Barataria Bay was heavily oiled during the DeepWater Horizon (DWH) oil spill, while Delaware Bay although urbanized had no reported recent oil spills. GCMS analyses of pre-spill 2009, BBLA and DBNJ fish found predominantly C2/C3 phenanthrene (1.28-6.52 ng/mg). However, BBLA also contained five higher molecular weight PAHs (0.06-0.34 ng/mg DW). Fluorescent aromatic compound spectroscopy (FACS) of gastrointestinal (GI) tract tissue showed statistically higher levels of hydroxypyrene-like PAHs in DBNJ than BBLA fish. Histopathologic lesions were more prevalent in BBLA than DBNJ fish. The lesion prevalence (gill, trunk kidney, epidermis, stomach) in the BBLA menhaden were significantly higher and more severe than observed in the DBNJ menhaden. Reversible lesions included gill lamellar hyperplasia, adhesions, edema, and epidermal hyperplasia. The increased pigmented macrophage centers were indicative of activated macrophages responding to connective tissue damage or other antigens. The liver hepatic necrosis and renal tissue mineralization may well have undergone repair, but damage to the kidney nephrons and hepatic/biliary regions of the liver would be slower to resolve and apparently remained after elimination of PAHs. Therefore, a direct cause and effect between DWH oil spill and increased lesion prevalence in BBLA menhaden could not be established.

Collaboration


Dive into the Ralph J. Portier's collaboration.

Top Co-Authors

Avatar

Gregory M. Olson

Louisiana State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jack N. Losso

Louisiana State University

View shared research outputs
Top Co-Authors

Avatar

David D. Friday

Louisiana State University

View shared research outputs
Top Co-Authors

Avatar

Gary P. Miller

Louisiana State University

View shared research outputs
Top Co-Authors

Avatar

Javed Iqbal

Louisiana State University

View shared research outputs
Top Co-Authors

Avatar

Laura M. Basirico

Louisiana State University

View shared research outputs
Top Co-Authors

Avatar

Rishipal R. Bansode

Louisiana State University Agricultural Center

View shared research outputs
Top Co-Authors

Avatar

Wayne E. Marshall

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge